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PACS. 03.75.Hh – Static properties of condensates; thermodynamical, statistical and struc-
tural properties.

PACS. 05.30.Jp – Boson systems.

Abstract. – A continuous configuration-interaction approach for condensates in a ring is
introduced. In its simplest form this approach utilizes for attractive condensates the Gross-
Pitaevskii symmetry-broken solution and arrives at a ground state of correct symmetry. Fur-
thermore, the energy found is lower than the Gross-Pitaevskii one and, with increasing number
of particles and/or strength of inter-particle interaction, is even lower than that accessed by
tractable diagonalization of the many-body Hamiltonian. Implications also to excited states
are briefly discussed.

The physics of bosons in low dimensions has regained much attention recently following
the realization of Bose-Einstein condensates in effectively lower-dimension trap potentials [1]
and observation of bright solitons for attractive condensates in a quasi–one-dimensional (1D)
trap [2] and optical waveguide [3]. Attractive condensates in 1D do not undergo collapse and
have been a subject of long interest, see, e.g., refs. [4–10]. For a system of two [4] and three [6]
attractive bosons in a ring, although it is quite involved, it is possible to obtain expressions
for the exact ground-state energy and wave function. However, for more than a few bosons
and as the inter-particle interaction is increased, it becomes impossible to compute the exact
ground-state energy and many-body wave function, and thus approximations are a must.
The Gross-Pitaevskii (GP) equation has been a very successful approximation for Bose-

Einstein condensates and can explain many experiments with them, see, e.g., refs. [11,12] and
references therein. For attractive condensates in a ring, due to the continuous axial symmetry,
the GP equation has been solved analytically [8]. Here, for weakly interacting bosons the
ground-state solution is symmetry-preserving, i.e., it possesses the rotational symmetry of
the full many-body problem. For stronger (attractive) interactions, the GP solution lowest
in energy becomes symmetry-broken and the gain in energy in comparison to the symmetry-
preserving solution is substantial, see inset of fig. 1. Because the GP orbital breaks the
symmetry of the many-body system, it cannot properly describe the true ground state.
In this letter, a continuous configuration-interaction (CI) approach for condensates in a

ring is introduced. For the attractive condensate, we will start from the GP symmetry-broken
solution and obtain a many-body wave function of correct symmetry and energy lower than
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Fig. 1 – Ground-state energy per particle of the continuous CI ansatz, ε, relative to that of the GP
symmetry-broken solution εGP for N = 10, 25, 50, 100, 300 and 500 bosons. The inset shows the
energies of the GP symmetry-preserving and symmetry-broken solutions. For |γ| > 0.5, the solution
lowest in energy becomes symmetry-broken. Also shown in the inset is the result of diagonalizing the
many-body Hamiltonian (1) with |l| ≤ 2 and |l| ≤ 3 (marked, respectively, by • and �) single-particle
plane waves for N = 25 bosons, and |γ| = 1.25 and 2.0. The diagonalization energies are higher than
the GP symmetry-broken ones, see the discussion in text.

the GP (symmetry-breaking) one. In addition, as we explain and demonstrate below, with
increasing number of particles and/or inter-particle interaction, our simple approach leads to
an energy which is even lower than that accessed by tractable diagonalization of the many-
body Hamiltonian. While solving explicitly for the ground state of attractive condensates in
a ring, implication of our approach also to excited states and in higher dimensions will be
discussed in brief.
Our starting point is the dimensionless many-body Hamiltonian describing N interacting

bosons in a ring [10]:

Ĥ =
∑

i

L̂2
ϕi
+

U

2

∑
i�=j

δ
(
ϕi − ϕj

)
, L̂ϕ = −i

∂

∂ϕ
(1)

Here, ϕ is the azimuthal angle and U describes the effective boson-boson interaction. It
is convenient to introduce the dimensionless parameter γ = U(N−1)

2π which is negative for
attractive condensates.
The simplest approximation to the ground state of Hamiltonian (1) is the Hartree approx-

imation where the many-body wave function is given by Φ(�ϕ ) = Πi φ(ϕi). Minimizing the
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energy for this wave function leads to the GP orbital φ(ϕ) [11,12]. To proceed, we briefly ex-
amine the GP solution φ(ϕ) (with periodic boundary conditions φ(0) = φ(2π)) [8, 10]. Below
the critical value |γ| ≤ 0.5, φ(ϕ) = 1/

√
2π, i.e., it is a constant. Consequently, the Hartree

wave function Φ(�ϕ ) possesses the symmetry of the exact ground state of (1), i.e., it is an eigen-
function of the total angular-momentum operator, L̂�ϕ =

∑
i L̂ϕi

, with the eigenfunction 0.
For |γ| > 0.5, as the number of particles and/or effective interaction is increased, φ(ϕ) is given
by a Jacobian elliptic function [8, 10], namely, it starts to localize and becomes a symmetry-
broken solution. In other words, to gain energy with respect to the symmetry-preserving
solution in this parameter regime the mean-field treatment “prefers” to break the rotational
symmetry of the many-body Hamiltonian (1), see inset of fig. 1. Consequently, Φ(�ϕ ) is no
longer an eigenfunction of L̂�ϕ and thus does not represent an appropriate approximation for
the exact ground state.
The question we would like to address here is how to go beyond the Hartree approximation

for attractive condensates in a ring. Of course, it would be of great advantage to start where
the GP equation makes a success, i.e., with the symmetry-broken solution φ(ϕ). To this end,
we employ the Hartree product Φ(�ϕ ) as a many-body “basis function” and plug it into a
multiconfigurational variational ansatz for the many-body Hamiltonian (1). Since the ring
has a continuous symmetry, it is reasonable to construct a continuous CI ansatz for the
many-body wave function. Namely, we define the continuous CI wave function as

Ψ(�ϕ ) = N
∫ 2π

0

dθ C(θ)Φ
(
�ϕ − θ

)
, (2)

where Φ(�ϕ − θ) = Πi φ(ϕi − θ) and N is the normalization constant. C(θ) is a continuous
function which is determined from the requirement that the expectation value of the Hamilto-
nian (1) with respect to the wave function Ψ(�ϕ ) is minimized. Having done that, an equation
(condition) for C(θ) is obtained admitting the solution

C(θ) = e+iLθ, L = 0, ±1, ±2, . . . . (3)

It can be verified by substituting eq. (3) into eq. (2) that Ψ(�ϕ ) is an eigenfunction of L̂�ϕ with
the eigenvalue L. For the ground state, the minimum of the energy is obtained for L = 0, i.e.,
C(θ) = 1. Thus, starting from the Hartree product Φ(�ϕ ), we obtain a simple and attractive
many-body wave function for the ground state. Following the above, it is an eigenfunction of
L̂�ϕ with the eigenvalue 0 and thus possesses the correct symmetry of the exact ground state
of a condensate in the ring.
To get a grasp at the many-body nature of Ψ(�ϕ ), we construct a specific example. For

this, we expand the GP orbital in plane waves, φ(ϕ) = 1√
2π
[a0 +

∑
l>0 al(e+ilϕ + e−ilϕ)],

a2
0+2

∑
l>0 a2

l = 1, where the al’s are real since φ(ϕ) is an even and real function of ϕ [8,10].
Just above the critical value |γ| = 0.5, we can retain the terms with a0 and a1 because higher
Fourier coefficients, al>1, are smaller. Constructing the corresponding Hartree product, one
obtains, after some algebra, the many-body wave function for N bosons:

Ψ(�ϕ ) � N 1
(2π)N/2

[
aN
0 + aN−2

0 a2
1

∑
i�=j

cos
(
ϕi − ϕj

)
+

+ aN−4
0 a4

1

∑
i�=j �=k �=l

cos
(
ϕi + ϕj − ϕk − ϕl

)
+ . . .

]
, (4)
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Fig. 2 Fig. 3

Fig. 2 – Population analysis of the continuous CI ansatz (lower curves) and the Fourier components
square of the symmetry-broken GP orbital (upper curves) for N = 100 bosons vs. |γ|.
Fig. 3 – Improvement of the continuous CI energy following a small localization (equivalent to positive
values of ∆γ) of the GP orbital for N = 10, 25, 50 and 100 bosons: (A) |γ| = 0.7; (B) |γ| = 0.35.

where the summation runs over all non-negative powers of the form aN−2j
0 a2j

1 . It can be seen
that indeed all boson coordinates are coupled to one another and that Ψ(�ϕ ) is an eigenfunction
of L̂�ϕ with the angular momentum 0.
Having at hand a wave function, one can proceed and calculate all ground-state properties,

beginning with the energy per particle ε[φ] = 1
N 〈Ψ(�ϕ )|Ĥ|Ψ(�ϕ )〉. In writing ε[φ], we keep in

mind that ε is a functional of the GP orbital φ(ϕ) (which is given here analytically [8, 10]).
The variational principle used to derive eq. (3) ensures that ε is lower than the GP one,
εGP. The evaluation of ε (and of the normalization constant N ) involves an integration over
one angle only which is simple to implement, e.g., using the discrete variable representation
(DVR) method [13].
In fig. 1 we present the outcome of calculating the energy ε relative to εGP for N = 10, 25,

50, 100, 300 and 500 particles and |γ| extending up to 2.2. The energy gain our continuous CI
ansatz achieves is clearly seen. For N 
 1, we see that ε approaches εGP from below. This is
in favor of our ansatz, since it is known that in this limit the GP energy approaches the exact
energy from above in 1D [5].
Also shown in fig. 1 (inset) are the results of diagonalizing the many-body Hamiltonian (1)

with |l| ≤ 2 and |l| ≤ 3 single-particle plane waves for N = 25 bosons and |γ| = 1.25 and
2.0. For these parameters, the diagonalization energies are even higher than εGP, least to say
from our obtained ε. Namely, with almost no effort we obtained a many-body wave function
of correct symmetry and lower energy. That with increasing number of particles and/or inter-
particle interaction our energy is even lower than that accessed by tractable diagonalization
of the many-body Hamiltonian is further explained below.
Next, we chose to study the fragmentation of the ground state which has been described

recently in refs. [7, 10]. To this end, we need to calculate the eigenvalues of the reduced one-
particle density ρ(ϕ,ϕ′), which is directly obtained from the many-body wave function Ψ(�ϕ ).
It is straightforward to prove that, since the Hamiltonian (1) is rotationally symmetric, the
natural orbitals are plane waves. In other words, the reduced one-particle density takes on a
simple form,

ρ
(
ϕ,ϕ′) = 1

2π

∑
l

pl e
+il(ϕ−ϕ′), (5a)
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where the pl’s are the eigenvalues (occupations). On top of that, in the large-particle limit we
obtain the appealing result that

pl
N�1−→ a2

l . (5b)

This means that the information on the fragmentation of the many-body wave function is given
in the large-particle limit by the plane-wave decomposition of the mean-field symmetry-broken
orbital. In fig. 2, we present the values of the occupation pl multiplied by the weight l2 (see
explanation below) for N = 100 particles and for |γ| ranging up to 2.2. The fragmentation
of the ground state is clearly seen and the inclusion of additional waves as |γ| is increased is
shown to be easily described by our continuous CI ansatz. In addition, the large-particle limit
given by eq. (5b) is already approached for a number of bosons as low as 100.
The inherent “difficulty” of diagonalizing the many-body Hamiltonian (1) for more than a

few bosons is also illustrated in fig. 2. For this, let us examine the plane-wave decomposition
of the GP solution φ for |γ| > 0.5. The contribution of each plane wave to the kinetic energy
in ε is given by l2a2

l ≈ l2pl (hence, the scaling by l2 in fig. 2). This provides a simple estimate
to the error introduced into a typical diagonalization calculation as a result of truncating
the number of plane waves included (we checked this estimate in several examples and found
it to be quite good). It can be seen in fig. 2 that the l2pl quickly become non-negligible
for |γ| > 0.5. Thus, the shape of φ(ϕ) provides also a measure for the computational effort
required to converge a diagonalization calculation of the many-body problem (1). As an
instructive example, we estimate for |γ| = 2.0 what is the number of particles for which more
than 109 configurations are needed to compute the energy within an absolute error of 0.01
(which is not too high accuracy). Taking all waves such that the error introduced by the cutoff
in 0.01 (in this case we take all waves for which l ≤ 8), we find this number to be N = 25.
This illustrates that, as the number of particle and/or inter-particle interaction is increased, it
becomes impractical to even approach converged diagonalization results for already two dozens
of bosons!
So far, we used the GP orbital φ(ϕ) for the Hartree wave function Φ(�ϕ ) entering the

continuous CI ansatz, see eq. (2). By construction, the GP orbital minimizes the Hartree
energy εGP. We may enquire what is the optimal orbital that minimizes our continuous
CI energy. This orbital is not the GP solution. It can be shown that by subtracting an
infinitesimal constant from the GP orbital, the energy is further lowered with respect to the
above-computed ε. To find this optimized orbital, we have to minimize the energy functional
ε[φ] with respect to the orbital φ. The equation obtained is quite involved and its exploitation
is out of the scope of the present work. We have reasons to expect that this optimization will
take us close to the exact solution. For N 
 1, our solution behaves correctly as discussed
above. At the other end of the scale, namely for two bosons, we can prove that our ansatz
with optimized φ(ϕ) leads to the exact solution.
Here, to get a physical insight into how the optimized orbital may look like, we discuss

the following result. The above-mentioned linear-response analysis suggests that a slight
localization of the GP orbital leads to further lowering of the continuous CI energy. To
illustrate this finding, we computed ε[φ] with our continuous CI approach for N = 10, 25, 50
and 100 bosons and |γ| = 0.7, where the orbital taken as φ is now the GP solution for slightly
different values of |γ|, see fig. 3A. For |γ| slightly larger than 0.7, the corresponding GP orbital
is slightly narrower than the orbital at |γ| = 0.7 and the energy has indeed decreased (after
the minimum is reached, the energy of course rises again). The results presented in fig. 3A
also show this finding to be more pronounced for a smaller number of bosons.
Interestingly, the finding that a small localization of the GP orbital leads to a lower energy

also applies to the regime |γ| ≤ 0.5, where the GP solution is symmetry-preserving. Specif-
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ically, we illustrate in fig. 3B that a small localization of the constant-valued GP orbital at,
say, |γ| = 0.35 leads to a decrease in the energy. Here, we calculated the energy ε[φ] with
slightly localized GP orbitals taken from the regime just above |γ| = 0.5, see fig. 3B.
Finally, let us briefly discuss further implications of our continuous CI approach. First, one

need not restrict himself to Hartree wave functions in eq. (2); other symmetry-broken many-
body wave functions can be used there as well. Secondly, the general solution for C(θ) in eq. (3)
leads to a many-body wave function of any chosen angular momentum L. In particular, one
can apply our approach to the lowest excited states of a given angular momentum L and
calculate the so-called Yrast line of strongly interacting attractive condensates. Thirdly, the
method and analysis work of course for any potential with azimuthal symmetry. In particular,
for the 2D isotropic harmonic trap potential and attractive bosons, our method is useful on
similar grounds as discussed above [14]. Last but not least, our continuous CI ansatz can also
be used with time-dependent orbitals. This generalization is suitable to describe the dynamics
of a condensate in time-dependent potentials, e.g., when the radius of the ring (trap) or the
strength of the inter-particle interaction is oscillating.
In conclusion, a continuous CI approach for bosons in a ring has been presented. In its

simplest form for attractive condensates, it builds on a single Hartree configuration (evaluated
with the GP symmetry-broken solution) and continuously rotated around the ring. The result
is a many-body wave function of correct symmetry and energy lower than the GP one. With
increasing number of particles and/or inter-particle interaction, our simple approach leads to
a lower energy than that accessed by tractable diagonalization of the many-body problem.
Our ansatz for the wave function in terms of the GP orbital shows that the fragmentation
of the ground state is simply obtained (with increasing number of particles) from the Fourier
transform of this orbital.
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