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PACS. 74.45.+c – Proximity effects; Andreev effect; SN and SNS junctions.
PACS. 85.25.Dq – Superconducting quantum interference devices (SQUIDs).

Abstract. – Non-linear electrodynamics of a ring-shaped Andreev interferometer (supercon-
ductor/normal conductor/superconductor hybrid structure) coupled to a circuit of the dissipa-
tive current is investigated. The current-voltage characteristics (CVC) is demonstrated to be
a series of loops with several branches intersecting at the CVC origin. The sensitivity of the
transport current Jd (or the applied voltage V ) to a change of the external magnetic flux can be
the same as the sensitivity of conventional SQUIDs. Spontaneous arising of coupled non-linear
oscillations of the transport current, the Josephson current and the magnetic flux in Andreev
interferometers are also predicted and investigated. The frequency of these oscillations can be
varied in a wide range, while the maximal frequency can reach ωmax ∼ 1012 s−1.

Recently, much attention has been paid to the charge transport in mesoscopic systems
which combine normal conductor (N) and superconductor (S) elements (for review papers, see,
e.g., [1,2] and references therein). In such hybrid structures the superconducting correlations
penetrate into the normal conductor changing its transport properties. This quantum effect
is most pronounced in S-N-S structures (“Andreev interferometer”) in which the quantum
interference gives rise to a high sensitivity of the superconducting correlations to the phase
difference between the superconductors ϕ. It results, in particular, in oscillations of the
Josephson current Js = Js(ϕ) with a change of ϕ [2].

If the normal region of an Andreev interferometer is connected to a voltage biased normal
reservoir, the injection current Jd = G(ϕ)V is also phase-dependent (G(ϕ) is the conductance
of the system, V is the bias voltage) [1].

In a ring-shaped geometry of the S-N-S structure, the phase difference between the super-
conductors is controlled by the magnetic flux Φ = HSr (H is the magnetic field threading the
ring, Sr is the area of the ring): ϕ = −2πΦ/Φ0, where the flux quantum Φ0 = πh̄c/e (c is
the light velocity, e is the electron charge). It allows to control the Josephson current Js(ϕ)
and the dissipative current Jd(ϕ) with a change of the external magnetic field Hext. On the
other hand, the Josephson current (which depends on the magnetic flux threading the ring)
creates its proper magnetic field which modifies this flux. It results in hysteresis loops in the
dependence of Φ on Hext as shown in fig. 1 (see, e.g., [3]).
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Fig. 1 – Dependence of the magnetic flux threading the ring, Φ, on the applied flux Φext = HextSr.

An injection of the dissipative current Jd in the normal segment of the S-N-S ring creates
a new situation in which the Josephson current and the dissipative current are coupled due
to their influence on the magnetic flux inside the S-N-S ring that, in its turn, affects both
currents themselves.

The aim of this paper is to show that the inductive interaction between the dissipative and
Josephson currents results in a complicated loop-shaped form of the current-voltage character-
istics (CVC) of S-N-S structures schematically presented in fig. 2. In the general case, several
branches of the CVC (which correspond to different values of the magnetic flux Φ inside the
ring) intersect at the origin of CVC (Jd = 0, V = 0), as is shown in the insets of figs. 4
and 5 below. Stable non-linear periodic-in-time oscillations of the dissipative current Jd, the
Josephson current Js and the magnetic flux Φ inside the ring (and hence the phase difference
ϕ) are predicted and investigated. The form of the loop-shaped CVC and the frequency of
these oscillations are shown to be extremely sensitive to the applied external magnetic field
Hext and the bias voltage V .

Loop-shaped current-voltage characteristics. – Injection of a dissipative current, Jd =
G(ϕ)V , in the normal part of an S-N-S system affects the Josephson current and adds an
additional anomalous current in the S-N-S structure [4]. In the limit of a low applied voltage
eV � ∆ (∆ is the superconductor energy gap) and a weak coupling to the normal reservoir

V

N

S

21

Fig. 2 – Superconductor/normal conductor/superconductor structure of the Andreev interferome-
ter type to which a voltage drop V is applied. Thick lines indicate potential barriers at normal
conductor/superconductor interfaces 1 and 2, and between the lead and the normal section of the
interferometer.
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tr � 1 (tr is the transparency of the potential barrier between the normal segment and the
biased reservoir), the non-equilibrium Josephson current is close to the equilibrium one, Js(φ),
while the distribution of the injected current inside the ring is non-trivial, being dependent
on many parameters [4]. In order to find the current-voltage characteristics in this limit, it is
convenient to divide the magnetic flux induced by the currents into two parts: the magnetic
flux of the Josephson current Φs = (Lr/c)Js (Lr is the self-inductance of the ring) which does
not depend on the injection current, and the magnetic flux Φd = (L12/c)Jd which is controlled
by the injected current Jd, where L12 is the mutual inductance of the ring and the dissipative
current circuit. In the sample geometry of fig. 2, L12 depends on the distribution of the
anomalous current inside the ring; below, I consider L12 as a phenomenological parameter.
For the sample geometry of fig. 2 its value can be estimated as L12 < L, L12 ∼ L (L is the
length of the ring).

Therefore, the total flux of the magnetic field, Φ, threading the ring can be written as
Φ = Φext +Φs +Φd (here Φext = HextSr). This equation and the relation Jd = G(ϕ)V define
the following parametric form of the CVC:

Jd = Jd(ϕ) ≡ 1
L12

(
cΦ0

2π
(ϕext − ϕ)− LrJs(ϕ)

)
,

V =
Jd(ϕ)
G(ϕ)

, ϕext ≡ −2πΦext/Φ0 . (1)

One of the distinguishing features of the CVC of the system under consideration is its
“manifold degeneracy”: several branches of the CVC (which correspond to different values of
the magnetic flux Φ) can intersect at its origin (V = 0, Jd = 0). As can be seen from eq. (1)
and fig. 1, the number of the branches passing the CVC origin is equal to the number of the
intersections of the vertical line Φext = const and the curve Φ = Φ(Φext).

Other key features of the CVC can be found if one considers the differential resistance
dV/dJd which is readily obtained from eq. (1):

dV
dJd

=
1

G(ϕ)

(
1 +

2π
cΦ0

L12Jd
G(ϕ)

G′(ϕ)
A(ϕ)

)
ϕ=ϕ(Jd)

. (2)

Here the prime means the derivative with respect to ϕ; the function A(ϕ) [5] is

A(ϕ) = 1 +
2πLr

cΦ0
J ′
s(ϕ). (3)

All quantities in eq. (2) are taken at ϕ = ϕ(Jd), which is a solution of the first equation in
eq. (1). Using eq. (1) one finds

dϕ/dJd = −2πL12

cΦ0

1
A(ϕ)

. (4)

If Lr > L(1)
cr ≡ cΦ0/(2πmax{|J ′

s|}), there are values of ϕ at which A(ϕ) = 0. Therefore, in
this case, as follows from eq. (2) the CVC Jd(V ) inevitably has points at which the differential
resistance dV/dJd tends to infinity changing its sign there. On the other hand, the derivative
G′ also changes its sign with a change of ϕ that can provide points at which dV/dJd goes to
zero changing its sign at them. The consecutive order of these peculiarities with an increase of
Jd (that is the form of the CVC) depends on the relative positions of the maxima and minima
of G(ϕ) and Js(ϕ).
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Fig. 3 – Typical dependences of the Josephson current and the conductance on the superconductor
phase difference ϕ for the case of a low transparency (tr � 1) of the potential barrier between the
normal section of the sample and the lead.

For the case of a low transparency of the potential barrier tr � 1, the conductance G(ϕ)
has maxima at odd numbers of π [1] while the Josephson current Js = 0 at odd and even
numbers of π [2], as schematically shown in fig. 3. This general information together with
eqs. (2)-(4) would suffice to find the CVC to be loop-shaped if Lr > L(1)

cr . In order to see it,
let us start from the magnitude of the external magnetic field which corresponds to ϕ = 0.
At ϕ = 0, one has G′ = 0, J ′ > 0 and hence dV/dJd > 0 (see eq. (2)). As at this point
dϕ/dJd < 0, the phase difference ϕ decreases with an increase of the current Jd (see eq. (4)).
Therefore, with an increase of the current G′ becomes negative and after passing the minimum
of Js(ϕ), A(ϕ) starts to decrease because J ′ < 0 now (see fig. 3); when A is small enough
(but positive), the differential resistance becomes dV/dJd = 0. With a further increase of the
current, A(ϕ) → +0 while G′ remains negative, and hence dV/dJd → −∞. When A(ϕ) = −0,
the differential resistance dV/dJd = +∞. In order to follow this second branch of the CVC one
should decrease the current because one has dϕ/dJd > 0 now (see eq. (4)). Pursuing such a
reasoning, one easily finds the current-voltage characteristic to be a series of loops which touch
the lines Jd = GminV and Jd = GmaxV (in our case, Gmin = G(0), Gmax = G(π)); the number
of loops intersecting at the origin of the CVC increases with an increase of the ring inductance.

Examples of such current-voltage characteristics are presented in fig. 4 for the case that
the normal segment of the Andreev interferometer is diffusive, and in fig. 5 for the case that
it is ballistic. In both cases, potential barriers are present at the N/S interfaces.

For numerical calculations of the CVC in the diffusive case I have used the following
formulae for the conductance [6] and the Josephson current [2], respectively:

G(ϕ) =
GN

r̃b

√
1− rb sin2 ϕ/2

, Js(ϕ) = Jc sinϕ, (5)

where GN is the conductance of the normal metal in the ring, r̃b = (Gb1 + Gb2)/Gb3 and
rb = 4Gb1Gb2/(Gb1 + Gb2)2, Gb1 and Gb2 are the N/S barrier conductances, Gb3 is the
conductance of the barrier between the normal section of the ring and the lead, Jc is the
Josephson critical current.

For numerical calculations of the CVC in the ballistic case I have used the following
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Fig. 4 – Current-voltage characteristics of a diffusive S-N-S ring for the external flux Φext/Φ0 equal
to odd numbers of π; the ring self-inductance is Lr = 2.5cΦ0/Jc; r̃b = 10, rb = 3/4; J1 = (Lr/L12)Jc,
V1 = J1/GN ∼ (Lr/L12)h̄vF/(eLN). The inset shows a zoomed vicinity of the CVC origin.

Fig. 5 – Current-voltage characteristics of a ballistic S-N-S ring for the external flux Φext/Φ0 equal

to odd numbers of π; the barrier transparencies are tr = 0.1, t
(1)
N = 0.2, t

(2)
N = 0.25; the ring self-

inductance is Lr = 2.5cΦ0/J
(b)
c ; J0 = (Lr/L12)J

(b)
c , V0 = J0/G0 = (Lr/L12)h̄vF/(eLN). The inset

shows a zoomed vicinity of the CVC origin.

formulae for the conductance G(ϕ) [7] and the Josephson current Js(ϕ):

G(ϕ) = G0
t2r√(

1 +
∣∣r(1)A r

(2)
A

∣∣ cosϕ+ t2r/2
)2 − ∣∣r(1)N r

(2)
N

∣∣2 , (6)

Js(ϕ) = J (b)c

∣∣r(1)A r
(2)
A

∣∣ sinϕ∫ 2π

0

dφ
2π sinϕ−(φ)

arctan
e−2tr sinϕ−(φ)

1− e−2tr cosϕ−(φ)
. (7)

Here G0 = N⊥e2/(πh̄) and J
(b)
c = 2ev‖FN⊥/(πLN); N⊥ = SN/λ

2
F, SN and LN are the cross-

section area and the length of the normal section of the ring, respectively, pF is the Fermi
momentum; v‖F = N−1

⊥
∑N⊥

�n v�n ∼ vF and v�n is the electron velocity in the �n-th transverse
mode; r(1,2)

N are the normal reflection amplitudes at N/S interfaces 1 and 2 while r2A+ r2N = 1,
(see [8]);

cosϕ−(φ) =
∣∣r(1)N r

(2)
N

∣∣ cosφ− ∣∣r(1)A r
(2)
A

∣∣ cosϕ, sinϕ−(φ) =
√
1− cos2 ϕ−(φ) .

Expanding eq. (7) in exp[ϕ−] and taking the limit tr → 0, t(1,2)
N → 0, one reduces it to the

well-known expression for the Josephson current in a 3D SNS junction [9].

Electromagnetic self-oscillations. – A change of the magnetic flux threading the S-N-S
ring results in the following current flowing in the ring:

Jr = Js(ϕ)− 1
cR

dΦ
dt

, (8)

where R is the resistance of the normal segment of the S-N-S ring [10]. Using the relation
ϕ = −2πΦ/Φ0, one sees eq. (8) to be the equation of the ac Josephson effect.
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Using eq. (8), one gets the following set of equations that describes the time evolution of
the transport current and the superconductor phase difference:

L11

c2
dJd
dt

+
L12Φ0

2πc3R
d2ϕ
dt2

+
L12J

′
s(ϕ)
c2

dϕ
dt

+
Jd
G(ϕ)

= V,

Φ0Lr

2πcR
dϕ
dt

+
cΦ0

2π
ϕ+ LrJs(ϕ) + L12Jd = −cΦext . (9)

Static solutions of eq. (9) correspond to the CVC of the ring (eq. (1)).
In order to investigate the time evolution of the system, it is convenient to eliminate Jd

from the set of equations (9) and get the following equation for ϕ(t):

Leff

Rc2
d2ϕ
dt2

+ γ(ϕ)
dϕ
dt

+ F (ϕ) = 0, (10)

where Leff = (LrL11 − L2
12)/L11. Equation (10) is the equation for a non-linear oscillator

under the “friction”
γ(ϕ) = 1 +

2πLeff

cΦ0
J ′
s(ϕ) +

Lr

L11

1
RG(ϕ)

(11)

and the “force”

F (ϕ) =
c2

L11G(ϕ)

(
ϕ− ϕext +

2πLr

cΦ0
Js(ϕ) +

2πL12

cΦ0
G(ϕ)V

)
. (12)

For low values of L11 the “friction” γ > 0 at any value of ϕ and hence, starting from any
initial state, the system approaches one of its static states determined by eq. (1). With an
increase of L11, the “friction” γ(ϕ) becomes negative in a certain range of ϕ and the static
state can become unstable. Investigations of the stability of the static solutions of eq. (10)
ϕ = ϕst show that the critical value of L11 is determined by the condition γ(ϕst) = 0, that is

Lcr =
Lr

BRG(ϕst)
, B = −

(
1 +

2πLeff

cΦ0
J ′
s(ϕst)

)
> 0. (13)

The Poincaré method [11] shows that in the plane (ϕ, ϕ̇), a stable limit cycle arises if

L11 > Lcr , b ≡ 1 +
2πLr

cΦ0
J ′
s(ϕst) +

2πL12

cΦ0
G′(ϕst) > 0.

These inequalities (together with the inequality in eq. (13)) can be satisfied only if J ′
s(ϕst) < 0

and G′(ϕst) > 0. From here and eqs. (2), (3) it follows that the stable limit cycle (that is
non-linear periodic time-oscillations of ϕ(t) and ϕ̇(t)) can only be on those branches of the
CVC with the negative differential resistance dV/dJd < 0 that are close to the Jd-axis in fig. 1
(and on the loops shown in the insets of figs. 4 and 5). If 0 < L11 −Lcr � Lcr, the frequency
of these oscillations is

ω0 =

√
bc4R

(L11Lr − L2
12)G(ϕst)

.

This frequency can be variated in a wide range, and estimations show that the maximal
frequency is ωmax ∼ 1012 s−1.

In conclusion, for both the diffusive and ballistic cases I have shown that the current-
voltage characteristics of an Andreev ring-shaped interferometer, Jd(V ), is a series of loops
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with several branches intersecting at its origin (hence the CVC has sections with a negative
differential resistance dV/dJd) if the ring inductance is large enough. These properties of the
CVC are robust as the negative differential resistance and the intersection of several branches
at the CVC origin appear at any value of the mutual inductance between the ring and the
dissipative transport circuit, L12, as soon as the self-inductance of the ring Lr is large enough to
provide A < 0 (see eqs. (2), (3)). This inequality (A < 0) is the same as the inequality needed
for functioning of conventional SQUIDs. What is more, changing the ring self-inductance Lr

and the external magnetic flux Φext, one can get CVC loops (and therefore the hysteresis loops
of the CVC) as small as wanted, this especially concerns the smallest loop around the CVC
origin (see insets in figs. 4, 5). Therefore the sensitivity of the transport current Jd (or the
applied voltage V ) to a change of the external magnetic flux can be as high as the sensitivity of
conventional SQUIDs. Spontaneous arising of coupled non-linear oscillations of the transport
current Jd(t), the Josephson current Js(t) and the flux Φ(t) in Andreev interferometers have
also been predicted and investigated. The frequency of the oscillations ω can be varied in a
wide range, and the maximal frequency can reach ωmax ∼ 1012 s−1.
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