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Abstract. – Applying monochromatic filters to the ends of a one-dimensional nonlinear
medium, we find an exact identity relating the nonreciprocity —the difference in transmis-
sion from the left or right— to the power flowing with equal sources on both sides. Thus,
nonreciprocity has an unanticipated link to an apparent violation of the second law of thermo-
dynamics; this violation is only apparent because of a subtle dependence on the (arbitrarily
small) filter bandwidth. At high intensities, a nonperturbative transition to a noisy state de-
stroys the identity. Apart from the theoretical insight provided by filters, not contaminating
other frequency channels has obvious advantages in communications.

Introduction. – The reciprocity theorem has a long history in acoustics and optics [1,2],
and is valid for all linear time-reversal invariant media. When time-reversal invariance is
broken, nonreciprocity is obtained. This is achieved in optics by a magnetic field or with
magnetic materials [3]. Alternatively, moving objects can be used, as in the Sagnac effect [4]
or acoustic tomography [5,6]. Nonlinearity is also sufficient to cause nonreciprocity: diode-like
photonic structures have been proposed using this fact [7–9].
Wave propagation in nonlinear media is complicated by the fact that even for monochro-

matic radiation, the medium generates all higher harmonics, coupling an infinite number
of frequency channels together. For a linear system, different frequencies act as independent
channels. In addition to simplifying the analysis, this decoupling produces constraints from the
second law of thermodynamics. For instance, for a one-dimensional nondissipative medium,
if monochromatic sources of equal intensity are switched on at both ends, there is no net flow
of energy from one side to the other. (In order to accurately represent a single frequency
channel of two black bodies, the relative phase of the two sources should be random, and a
phase average performed.) This is true even without time-reversal invariance. Equivalently,
with a single source the transmitted power is independent of whether the source is to the left
or the right. These results do not apply to a nonlinear medium.
c© EDP Sciences
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Here we use a new method to analyze wave propagation in one-dimensional nonlinear
media, by applying monochromatic filters at the two ends. All the reflected and transmitted
power is thus at the same frequency as the incident waves, with higher harmonics confined
to the scattering medium. Apart from the fact that the analysis is considerably simplified by
the need to consider only one input and output channel at each end, one can try to apply
the second law of thermodynamics: since both the input and the output on each side are at
the same frequency, it would seem that the incoming and outgoing waves could be viewed as
being emitted and absorbed by a black body behind the filter.
Through numerical and analytical calculations on various physical models, with this single-

channel configuration, we find a remarkable nonlinear identity relating the nonreciprocity in
the transmitted power to the net power flowing from one side to the other with sources of
equal intensity (and random relative phase) on both sides. In fact, from the discussion in the
previous paragraph, one would expect the latter quantity, the net power flowing from one side
to the other with sources of equal intensity on both sides, to be zero, so that nonreciprocity
and this “pseudo-violation” of the second law are linked. (We show at the end of this paper
why the second law is not really violated.) At high intensities, a nonperturbative transition
to a noisy state destroys the identity.
We define JLR(a) as the transmitted power from left to right when a wave of amplitude a

impinges on the left of the medium, and JRL(a) similarly. We also define JTh(a) as the net
power flowing from right to left in the “thermodynamic” configuration: when sources to the
left and right are simultaneously switched on, with amplitude a and aeiφ, with the relative
phase φ being averaged over. Our main result is then

JLR(a)− JRL(a) = 4JTh

(
a/

√
2
)

(1)

for any a up to a maximum where a phase transition occurs (see the next section of this
paper). The factor of

√
2 on the right-hand side causes the total incident power to be equal

in all three cases: when the source is to the left, when the source is to the right, and with
sources on both sides. (In the first two cases, the power emitted by the source is proportional
to |a|2, while in the last case, the power emitted by each source is proportional to |a|2/2.)
Without the factor of

√
2, no identity resembling eq. (1) is found. As the incident amplitude a

is increased, the medium undergoes a phase transition from a periodic to an aperiodic steady
state, and eq. (1) is no longer satisfied. We conjecture that eq. (1) is general for any scattering
process with two input and output channels at the same frequency —whether one-dimensional
or not— that is nondissipative, invariant under time translation and time reversal, and (in
view of the phase transition) is perturbatively accessible.
For simplicity, we consider longitudinal (acoustic) waves. This has the additional motiva-

tion that all examples of nonreciprocity through nonlinearity considered so far have been op-
tical.

Numerical results. – The first model we examine is a chain of N particles connected
by anharmonic springs. If yi are the displacements of the particles from their equilibrium
positions,

miÿi = −∂yi

[
V (yi − yi−1) + V (yi+1 − yi)

]
(2)

for all the particles except the first and last one, with

V (y) =
1
2
y2 +

ε

4
y4. (3)

The first and last particles have attached filters and are coupled to the environment. If
fi(x−vt)+fo(x+vt) is the displacement due to the incoming and outgoing waves beyond the
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Fig. 1 – Numerical results for a 4 + 2 particle chain with masses 100, 1.7, 1.4, 1.9, 1.3 and 100.
The left-to-right current JLR is plotted as a function of the nonlinearity ε (left vertical scale). The
nonreciprocity, JLR − JRL, is compared with the phase-averaged current with both sources turned on
at half intensity, JTh (right vertical scale). The two quantities are equal in the perturbative state,
but not in the nonperturbative state.

left boundary of the medium, the force exerted by these waves on the boundary is proportional
to −∂x[fi + fo], while the velocity of the boundary is equal to the velocity just outside the
medium, ∂t[fi + fo]. Since −v∂x[fi + fo] = −∂t[fi + fo] + 2∂tfi, the external force on the
boundary is the sum of a “viscous” damping term and a term specified by the incoming
waves [10]. For monochromatic waves,

m1ÿ1 = −m1ω
2
0y1 − V ′(y1 − y2)− κẏ1 +AL cos(ωt),

mN ÿN = −mNω2
0yN − V ′(yN − yN−1)−

−κẏN +AR cos(ωt+ φ). (4)

The −mω2
0 term “tethers” the end particles and makes them act as filters if m1,N → ∞ and

ω = ω0: they are transparent at ω, since then the forces from the interior −V ′ and from the
exterior −κẏ + A cos(ωt) are equal, while at higher harmonics since m1,N (n2ω2

0 − ω2
0) → ∞,

y1,N (nω0) = 0, and the boundaries are fixed. The filter bandwidths can be made arbitrarily
small by increasing m1,N .
These equations were simulated for a chain of 4 + 2 particles with ω0 = 1, in units where

κ = aL,R = 1 (with both sources on, aL = aR = 1/
√
2). Various values of m2 . . .m5 were

used; the results shown in fig. 1 are representative. The nonlinearity parameter ε in eq. (3)
was increased at fixed aL,R, equivalent to increasing aL,R at fixed ε. The system undergoes a
first-order transition (with hysteresis) as ε is increased, from a periodic state with frequency
ω = ω0 = 1, to a noisy state. The existence of two states is somewhat similar to that in
ref. [11] for optics. As seen in fig. 1, the perturbatively accessible periodic state satisfies
eq. (1), whereas the nonperturbative state does not.
In the noisy state, preliminary results when the incident wave is entirely from the left show

broad peaks in the transmitted power at ω ≈ 0.4ω0 and ≈ 0.15ω0, in addition to the peaks at
harmonics of ω0. As ε is increased further, there is another transition at ε ≈ 0.4, with a jump
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in the average transmitted power and a broad-band component to the power spectrum. (As
m1,N → ∞, the noise in the transmitted power vanishes outside the nonlinear medium. At
finite m1,N it is a suppressed version of the power spectrum inside the medium.) The jumps
from the perturbative state to the first noisy state and thence to the second noisy state are
at different values of ε when the incident wave comes from the left instead of the right. A
detailed dynamical analysis would be required to characterize the various noisy states and the
transitions between them. However, this is not the focus of this paper.

Analytical results. – The second model we consider is a continuum one: two adjacent
nonlinear layers, with the linear wave equation satisfied outside. Thus

n2
i ÿ = Bi∂

2
xy + µi∂x(∂xy)2, (5)

where y is the displacement of the wave, and ni, Bi, µi vary from region to region. Inside
the scattering medium, the two layers have parameters (n1, B1, µ1) and (n2, B2, µ2). Outside,
n = B = 1 and µ = 0. The scatterer covers the region −1 < x < 1, with the boundary between
the two layers at x = 0. Equation (5) retains the leading nonlinearity in the elasticity of the
medium; the energy density of the wave is 1

2n2ẏ2 + 1
2 (∂xy)2 + µ(∂xy)3/3. At the boundary

at x = 0, y and B∂xy + µ(∂xy)2 (the force exerted on the boundary from the two regions it
separates) are continuous. We also consider an alternative to eq. (5):

n2
i ÿ = Bi∂

2
xy + µi∂x(∂xy)3. (6)

Equations (5) and (6) are in the class of Fermi-Pasta-Ulam (FPU) equations [12].
Equations (5) and (6) were solved using perturbation theory. Higher harmonics of the

fundamental frequency ω are confined to the scattering medium −1 < x < 1 as standing
waves. For ω, the filters are transparent, and the boundary conditions at x = ±1 are the
same as at x = 0. The equations were solved to third order using MathematicaTM, with
µ = 1 and various values for n1,2, B1,2 and ω. This yielded the leading O(|a|4) correction
to the outgoing power to the left (and right) for eq. (5), and two nonlinear contributions, to
O(|a|6), for eq. (6). In both cases, eq. (1) was verified. Note that this perturbative expansion
was incapable of seeing the nonperturbative noisy phase observed numerically. Removing the
filters caused eq. (1) to break down.
The nonzero right-hand side of eq. (1) might seem to contradict the second law of thermo-

dynamics. If identical black bodies (at the same temperature) are placed on both sides of the
medium, behind the filters, the filters should let equal-intensity monochromatic waves into
the medium. Since a nonzero right-hand side to eq. (1) implies a net flow of power from one
side to another with equal intensity monochromatic sources, this seeming equivalence between
black-body and monochromatic sources suggests that with identical black-body sources, one
would heat up and the other cool down. (This is different from ref. [13], where the sources had
to be maintained out of equilibrium, so that second law arguments were inapplicable.) The
fallacy in this argument is that, as illustrated by our discrete model, any filter has a nonzero
(albeit arbitrarily small) bandwidth; in our discrete model, m1,N must be finite. There are,
therefore, two different regimes. In the first, the filter bandwidth is small compared to the
source bandwidth, in which case the response of the medium does not change if the source
bandwidth is increased, and thermodynamic arguments applicable to black bodies can indeed
be invoked. The other regime is when the source bandwidth is much smaller than the filter
bandwidth, in which case the response of the medium does not change if the source bandwidth
is decreased till it is perfectly monochromatic. It is impermissible to use thermodynamic ar-
guments from the first regime, for the second regime of monochromatic sources (the focus
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of this paper) [14]. Therefore, the second law is not violated by the net flow of power for
equal-strength monochromatic sources on both sides that we have obtained here. From the
discussion before eqs. (4), black-body sources at the ends correspond to white noise being
applied to the terminal particles (which is then filtered by them). With the damping term
in eq. (4), eqs. (2) and (4) are then generalized Langevin equations, which reach thermal
equilibrium [15], in accordance with the second law.

Discussion. – In this paper, we have obtained an exact identity for wave propagation
in nonlinear media, relating the nonreciprocity in transmission to a pseudo-violation of the
second law of thermodynamics. This has been done with a setup with monochromatic filters
at the boundaries of the scatterer, enabling different frequency channels to be kept separate.
Through a mapping to a Langevin equation, we have shown that the second law is satisfied, and
that the apparent violation occurs because of a singular dependence on the filter bandwidths.
We have also obtained a nonperturbative transition to a noisy state when the nonlinearity
(equivalently, the external driving) is strong. The results obtained have been with sound
waves instead of light, for which, to our knowledge, nonlinearity-induced nonreciprocity has
not been demonstrated so far.
As mentioned earlier, we conjecture that eq. (1) is valid for any nondissipative time-

translation and time-reversal invariant scattering process with two input and output channels
at the same frequency, whether one-dimensional or not, provided that one is in the weak
driving (perturbative) regime. Apart from the phase transition shown in this paper, the
necessity of the last condition can be seen mathematically: explicit counterexamples to eq. (1)
can be constructed without it [17].
It would be interesting to examine how far eq. (1) extends if the filters were at different

frequencies (one a multiple of the other), if there were more than two input/output ports,
or with light instead of sound. A physical explanation of eq. (1) would help resolve such
questions. It should be possible to have multiple channels in parallel in the perturbative
phase if their frequency ratios were irrational, but it is not clear how strong the interference
between them would be otherwise. Second-law constraints could be probed further: with
almost monochromatic sources, the dependence of both sides of eq. (1) on source bandwidth
could be investigated.
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