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Abstract. – We uncovered a class of transient chaos for which the average lifetime obeys the
following scaling law: τ ∼ exp[C0 exp[C1ε

−γ ]], where C0, C1, and γ are positive constants and
ε is a scaling parameter. This occurs in dynamical systems preceding an unstable-unstable pair
bifurcation, subject to noise of amplitude ε. The extreme longevity of the transient lifetime for
small ε is striking, which has not been reported previously. We formulate a theory to explain
this type of extraordinarily superpersistent chaotic transients, and point out physical relevance
and implications.

Superpersistent chaotic transients (in the normal sense) are characterized by the following
scaling law for their lifetime [1, 2]:

τ ∼ exp[Cε−α], (1)

where ε is a parameter variation, C > 0 and α > 0 are constants. As ε approaches the critical
value zero, the transient lifetime τ becomes superpersistent in the sense that the exponent in
the exponential dependence diverges. The fundamental dynamical mechanism for this type of
transient chaos was argued to be the unstable-unstable pair bifurcation, in which an unstable
periodic orbit on the boundary of a chaotic invariant set collides with another unstable periodic
orbit pre-existing outside the set [1,2]. The same mechanism was believed to be responsible for
the bifurcation that creates a riddled basin [3]. Earlier the transients were also identified in a
class of coupled-map lattices, leading to the speculation that asymptotic attractors may not be
relevant for turbulence [4]. Superpersistent chaotic transients were demonstrated in laboratory
experiments using electronic circuits [5]. Signatures of noise-induced superpersistent chaotic
transients were recently identified [6] in the advective dynamics of inertial particles in open
chaotic flows.

In this letter, we report a new class of transient chaos that is more persistent than super-
persistent chaotic transient in the following sense of scaling:

τ ∼ exp[C0 exp[C1ε
−γ ]], for small ε, (2)

where C0 > 0, C1 > 0, and γ > 0 are constants. The transient is induced by noise in
the parameter regime preceding an unstable-unstable pair bifurcation, where ε is the noise
c© EDP Sciences
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Fig. 1 – (a) In the absence of noise, a chaotic attractor, the basin boundary, and the pair of unstable
periodic orbits. (b) Escaping channel induced by noise through the stochastic collision between the
unstable-unstable pair.

amplitude. Because of the double exponential dependence and the algebraic divergence for
small noise, the average lifetime of the transients can be significantly longer than that given
by the normal superpersistent scaling law (1). We thus call this type of transient chaos ex-
traordinarily superpersistent chaotic transients. To establish the scaling law (2), we construct
an analyzable model that captures the fundamental dynamics near an unstable-unstable pair
bifurcation, under the influence of noise. In particular, let p be the system parameter and as
it increases through pc, an unstable-unstable pair bifurcation occurs. For p in the vicinity of
pc, the model can be converted to a class of one-dimensional stochastic differential equations,
the solution to which yields the scaling law (2) for p < pc (subcritical regime). More precisely,
the scaling (2) is valid for 0 < ε < εc, where εc → 0 as p → pc. For ε > εc, the transient is
normally superpersistent in the sense of the scaling law (1). That is, as p approaches the bi-
furcation point pc from below, the regime in which the extraordinarily superpersistent chaotic
transients can be observed shrinks and eventually vanishes. For p = pc, the regular scaling
law (1) holds. For p > pc (supercritical regime), the average transient lifetime follows the
regular scaling law (1) for large noise but it approaches a constant for small noise. Thus, in
this supercritical parameter regime where there is already a chaotic transient, the lifetime has
no dependence on the noise amplitude if it is small but the lifetime decreases as the noise is
increased. This means that the transient lifetime in the presence of noise can be significantly
shorter than that in the absence of noise. This is in contrast to a speculation in ref. [2] that
noise tends to increase the transient lifetime in the supercritical regime. We believe these
findings are important not only for the fundamentals of nonlinear systems, but also for a
better understanding of the interplay between noise and chaotic dynamics.

The dynamical mechanism for superpersistent chaotic transients is the unstable-unstable
pair bifurcation [1–3], which can occur in high-dimensional chaotic systems that are described
by invertible maps of at least three dimensions (corresponding to flows of at least four di-
mensions) or noninvertible maps of at least two dimensions. For simplicity we consider a
two-dimensional noninvertible map. Imagine two unstable periodic orbits of the same period,
one on the chaotic attractor and another on the basin boundary, as shown in fig. 1(a). In a
noiseless situation, as p is increased through pc, the two orbits coalesce and disappear simul-
taneously, leaving behind a “channel” in the phase space through which trajectories on the
chaotic attractor can escape to another attractor, as shown in fig. 1(b). The chaotic attrac-
tor is thus converted into a chaotic transient, but the channel created by this mechanism is
extremely narrow, leading to the regular superpersistent scaling law (1). Our main interest
in this letter is transient chaos induced by noise for p < pc, where there is an attractor in the
absence of noise. For small noise, there can be small but nonzero probability that a chaotic
trajectory moves to the location of the channel and stays there for a finite amount of time to
escape through the channel while it is open.
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Suppose the largest Lyapunov exponent of the chaotic attractor is λ > 0. Due to noise,
the unstable-unstable pair can undergo collisions at random times, giving rise to a set of
channels (at the location of the orbit and all its preimages) that open stochastically in time.
During their opening, the channels are locally transverse to the attractor. In order to escape,
a trajectory must spend at least time T at the openings. The trajectory must then come
to within distance of about exp[−λT (ε)] of the periodic orbit on the attractor or any of its
preimages. The probability for this to occur is proportional to exp[−λT (ε)]. The average time
for the trajectory to remain on the attractor, or the average transient lifetime, is thus

τ ∼ exp[λT (ε)]. (3)

We see that the dependence of T (ε) on ε, which is the average time that the trajectories spend
in the escaping channel, or the tunneling time, is the key quantity determining the scaling of
the average chaotic transient lifetime τ with noise.

To obtain the scaling dependence of the tunneling time T (ε) on ε, we note that, since the
escaping channel is extremely narrow, for typical situations where λ > 0 and T (ε) large, the
dynamics in the channel is approximately one-dimensional along which the periodic orbit on
the attractor is stable but the orbit on the basin boundary is unstable for p < pc (fig. 1(a)).
This feature can thus be captured through the following simple one-dimensional map:

xn+1 = x2
n + xn + p + εξ(n), (4)

where x denotes the dynamical variable in the channel, p is a bifurcation parameter with
critical point pc = 0, ε is the noise amplitude, and ξ(n) is a Gaussian random variable of
zero mean and unit variance. For p < pc = 0, the map has a stable fixed point xs = −√−p
and an unstable fixed point xu =

√−p. These two collide at pc and disappear for p > pc,
mimicking an unstable-unstable pair bifurcation. Assuming the tunneling time T � 1, we
can approximate the map by the following one-dimensional stochastic differential equation:

dx
dt

= x2 + p + εξ(t). (5)

For convenience we write xr = xs for p < pc and xr = 0 for p ≥ pc. Let P (x, t) be a probability
density function of the stochastic process (5), which obeys the Fokker-Planck equation [7],

∂P (x, t)
∂t

= − ∂

∂x

[(
x2 + p

)
P (x, t)

]
+

ε2

2
∂2P

∂x2
. (6)

Let l be the effective length of the channel in the sense that a trajectory with x > l is considered
to have exited the channel. The average time required for a trajectory to travel through the
channel is effectively the mean first-passage time from xr to l. Our interest is in the trajectories
that do escape. For such a trajectory, we assume that once it falls into the channel through
xr, it will eventually exit the channel at x = l without going back to the original chaotic
attractor. This is reasonable considering that the probability for a trajectory to fall in the
channel and then to escape is already exponentially small (eq. (3)) and, hence, the probability
for any “second-order” process to occur, where a trajectory falls in the channel, moves back to
the original attractor, and falls back in the channel again, is negligible. For trajectories in the
channel there is thus a reflecting boundary condition at x = xr: [P (x, t) − ∂P/∂x]|x=xr = 0.
That trajectories exit the channel at x = l indicates an absorbing boundary condition at
x = l: P (l, t) = 0. Assuming that trajectories initially are near the opening of the channel
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Table I – Scaling laws of τ in different parameter regimes.

τ 0 < ε < εc ε > εc

p < pc exp[C0e
C1ε−2

] exp[C2ε
−2/3]

p = pc exp[Cε−2/3] exp[Cε−2/3]

p > pc constant exp[C3ε
−2/3]

(but in the channel), we have the initial condition P (x, xr) = δ(x−x+
r ). Under these boundary

and initial conditions, the Fokker-Planck equation can be solved, yielding the following mean
first-passage time [7]:

Tp(ε) =
2
ε2

∫ l

xr

dy exp[−bH(y)]
∫ y

xr

exp
[
bH

(
y′

)]
dy′, (7)

where H(x) = x3 + 3px and b = 2/3ε2.
To evaluate the double integral in eq. (7), we make use of the approximate forms of

H(x) near xs and xu: H(x) ≈ 2|p|3/2 − 3
√|p|(x − xs)2 ≡ H1(x) for x ≈ xs and H(x) ≈

−2|p|3/2 + 3
√|p|(x − xu)2 ≡ H2(x) for x ≈ xu. For p < pc, the integrand exp[−bH(x)] in

the first integral exhibits both increasing and decreasing behaviors on [xr, l] and the second
integral

∫ y

xs
exp[bH(w)]dw is an increasing function of y. It is thus convenient to break the

double integral into five integrals on various subintervals:
∫ l

xs

dy exp[−bH(y)]
∫ y

xs

exp[bH(w)]dw =
∫ 0

xs

dy exp[−bH(y)]
∫ y

xs

exp[bH(w)]dw +

+
∫ l

0

dy exp[−bH(y)]
∫ 0

xs

exp[bH(w)]dw +
∫ xu

0

dy exp[−bH(y)]
∫ y

0

exp[bH(w)]dw +

+
∫ l

xu

dy exp[−bH(y)]
∫ xu

0

exp[bH(w)]dw +
∫ l

xu

dy exp[−bH(y)]
∫ y

xu

exp[bH(w)]dw,

which can be individually estimated using the approximate functions H1(x) and H2(x). We
obtain(1): Tp(ε) ∼ 1√−p

exp[ (−p)3/2

ε2 ] for ε < εc = |p|3/4 and Tp(ε) ∼ ε−2/3 for ε > εc.
Substituting Tp(ε) in eq. (3) for the small-noise regime (ε < εc) gives the scaling law (2) for
extraordinarily superpersistent chaotic transients. For large noise (ε > εc), we see that the
transient is normally superpersistent.

For p ≥ pc, the function H(x) is increasing so that the double integral in eq. (7) can be
estimated in terms of an infinite power series which can be proved to be convergent. Our
detailed analysis yields the following: (1) for p = pc = 0, Tp(ε) ∼ ε−2/3, and (2) for p > pc,
Tp(ε) ∼ 1/

√
p = const for ε < εc and Tp(ε) ∼ ε−2/3 for ε > εc.

Our theoretically predicted scaling laws for the chaotic-transient lifetime in the three
regimes are summarized in table I, where constants C, C1, C2, and C3 are all positive. From
the right column of the table, we see that the critical noise amplitude εc is the noise level
beyond which the transients are normally superpersistent for both the subcritical and super-
critical cases. The conceptual meaning of εc is as follows. For the subcritical case, there is a
distance between the unstable-unstable pair and there is no open channel in the deterministic
case. Noise induces random opening and closing of the channel. As such, εc is proportional

(1)Y. Do and Y.-C. Lai, preprint (2004).
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Fig. 2 – For the two-dimensional map model, in the absence of noise, a chaotic attractor near z = 0,
its basin of attraction (blank), and the basin of the attraction of the attractor at z = +∞ (black).

to the distance between the pair of unstable periodic orbits. In the supercritical regime, an
escaping channel is already open. If the noise level is too small, it will not have any appreciable
effect on the channel dynamics. The critical noise level εc thus depends on the width of the
open channel. In both cases, εc depends on the parameter variation from the critical point.

We now provide numerical support for the scaling laws in table I. We utilize the following
two-dimensional, noninvertible map which was first used by Grebogi et al. [1, 2] to illustrate
superpersistent chaotic transients in the deterministic case: θn+1 = 2θn mod 2π and zn+1 =
azn+z2

n+β cos θn, where a and β are parameters. Because of the z2
n-term in the z-equation, for

large |zn| we have zn+1 > zn. There is thus an attractor at z = +∞. Near z = 0, depending on
the choice of the parameters, there can be either a chaotic attractor or none. For instance, for
0 < β � 1, there is a chaotic attractor near z = 0 for a < ac = 1− 2

√
β and the attractor be-

comes a superpersistent chaotic transient for a > ac [1,2]. Figure 2 shows, for β = 0.04 and a =
ac = 0.6, the chaotic attractor near z = 0, its basin of attraction (blank), and the basin of the
attraction of the attractors at z = +∞ (black). Signature that an unstable-unstable pair bi-
furcation is about to occur can be seen by the vertical, downward tip at θ = 0, which is close to
the chaotic attractor. To describe a channel dynamics at θ = 0, we can rewrite the z-mapping
in the model as xn+1 = xn + x2

n + p, where x = z − z∗, z∗ is the minimum of the right-hand
side of the z-mapping, and p =

√
β(a−ac)− [(a−ac)/2]2, i.e. p ≈ √

β(a−ac) for small |a−ac|.
Figure 3(a) shows the behaviors of the tunneling time for five cases in the subcritical

regime (p = −0.0001, p = −0.001, p = −0.01, p = −0.1, and p = −0.2, and the five vertical
dashed lines from right to left indicate the values of ln 1/εc for these five cases, respectively),
for the critical case (p = pc = 0), and for the supercritical case (p = 0.0001). We observe a
robust algebraic scaling with the 2/3 exponent for the critical case. For large noise ε > εc, the
scalings for the subcritical and supercritical cases coincide with that for the critical case. For
the supercritical case, however, the tunneling time plateaus for ε < εc. Since the plateaued
value of T is approximately the tunneling time in the absence of noise, we see that as the
noise amplitude is increased, the tunneling time decreases, as predicted by our theory. (Note
that this contrasts the speculation in ref. [2] that noise tends to prolong the chaotic transient
lifetime.) For the subcritical cases, the tunneling time increases substantially for ε < εc

as compared with that in the critical case. Figure 3(b) shows, on a double-logarithmic vs.
logarithmic scale, the behaviors of the tunneling time for the five cases in the subcritical
regime. The approximately linear fits in the small-noise range indicate that the tunneling
times themselves for those cases obey the superpersistent scaling law. This can be considered
as indirect evidence for extraordinarily superpersistent chaotic transient. Note that, because
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Fig. 3 – (a) Scaling behaviors of the average tunneling times Tp(ε) with noise on a logarithmic scale for
five cases in the subcritical regime (p = −0.0001, p = −0.001, p = −0.01, p = −0.1, and p = −0.2), for
the critical case (p = pc = 0), and for the supercritical case (p = 0.0001). (b) Replots of the tunneling
times on a double-logarithmic vs. logarithmic scale for the five cases in the subcritical regime in (a).
Because of the extremely rapid increase in the tunneling time as ε is decreased from εc, it is difficult
to extend the scaling range for the noise variation.

of the extremely rapid increase in the tunneling time as ε is decreased from εc, it is difficult to
extend the range of the noise variation in fig. 3(b). (For instance, decreasing ε by one order
of magnitude increases Tp(ε) by a factor of e100.)
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Fig. 4 – For our numerical model, noisy scaling laws of the average chaotic transient lifetime for the
subcritical (a = 0.5 < ac, triangles), critical (a = ac, filled circles), and supercritical (a = 0.7 > ac,
asterisks) cases. The straight line indicates normally superpersistent chaotic transient, which holds
for a = ac and for relatively large noise range in both the subcritical (a < ac, the upper data set) and
the supercritical (a > ac, the lower data set) cases.
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Figure 4 shows the scaling of the average chaotic transient lifetime with the noise ampli-
tude ε on a proper scale. The scaling in the critical case follows the normal superpersistent
law (1). For the subcritical and supercritical cases, the scalings coincide with the normal
superpersistent law only for large noise (ε > εc ≈ (0.1

√
β)3/4). In the supercritical regime,

the transient lifetime deviates from the normal superpersistent scaling law for ε < εc and
then levels off, approaching a constant as ε → 0. In the subcritical regime, for small noise,
the chaotic transient lifetime increases much faster as compared with the critical case. This
behavior, in combination with fig. 3(b), represents numerical evidence for our predicted ex-
traordinarily superpersistent chaotic transients. Note that the ordinate of fig. 4 is already on
a double-logarithmic scale. Because of the scaling constants in (2), a triple-logarithmic scale
plot would be inappropriate because such a plot still would not yield a linear behavior.

A feature of our theoretical predictions is that for relatively large noise, the scaling laws for
the average transient lifetime for the subcritical, critical, and supercritical parameter regimes
all collapse onto a single curve characterizing the normal superpersistent transient behavior
that has indeed been observed experimentally [5]. Possible challenges to experimental detec-
tion of an extraordinarily superpersistent chaotic transient include: 1) its distinction from a
normally superpersistent transient occurs only in the small-noise regime, and 2) its lifetime
can be extremely long. However, we are hopeful that these difficulties can be overcome, allow-
ing for experimental test of the fundamental phenomenon of extraordinarily superpersistent
chaotic transient.

In summary, we have addressed the phenomenon of noise-induced superpersistent chaotic
transients and derived scaling laws governing the dependence of the average transient lifetime
on noise amplitude. Our main contribution is the discovery of extraordinarily superpersistent
chaotic transients, which is induced by noise in a parameter regime preceding an unstable-
unstable pair bifurcation. These results can be relevant to physical situations such as the
advection of inertial particles in open chaotic flows(2) [6, 8].

∗ ∗ ∗

This work was supported by AFOSR under Grant No. F49620-03-1-0290.

REFERENCES

[1] Grebogi C., Ott E. and Yorke J. A., Phys. Rev. Lett., 50 (1983) 935.
[2] Grebogi C., Ott E. and Yorke J. A., Ergodic Theory Dynam. Syst., 5 (1985) 341.
[3] Lai Y.-C., Grebogi C., Yorke J. A. and Venkataramani S. C., Phys. Rev. Lett., 77 (1996)

55.
[4] Crutchfield J. P. and Kaneko K., Phys. Rev. Lett., 60 (1988) 2715.
[5] Zhu L., Raghu A. and Lai Y.-C., Phys. Rev. Lett., 86 (2001) 4017.
[6] Do Y. and Lai Y.-C., Phys. Rev. Lett., 91 (2003) 224101.
[7] Gardiner C. W., Handbook of Stochastic Methods (Springer-Verlag, New York) 1997.
[8] Benczik I. J., Toroczkai Z. and Tél T., Phys. Rev. Lett., 89 (2002) 164501.

(2)In ref. [6], superpersistent chaotic transients were identified for noise-induced escape from chaotic attractors
formed by inertial particles in open fluid flows. The range of noise variation there corresponds to, for instance
in fig. 4, the noise range on the left-hand side where all three data sets for the subcritical, critical, and
supercritical cases, respectively, collapse onto a single line characterizing normally superpersistent chaotic
transient. Extraordinarily superpersistent chaotic transients in the subcritical regime occur for noise amplitude
smaller than those in this range.


