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Abstract. – The changes in the time to failure in creep problems, brought about by the
inherent existence of flaws in materials, are calculated. Results agree with experimental ones
and predict the time distribution dependence on temperature.

Introduction. – In a recent series of papers, Ciliberto and his collaborators [1–5] have
succeeded in accurately measuring times to failure of heterogeneous materials (wood, fiber-
glass, etc.) under different subcritical stresses. They have shown that these times follow an
exponential behavior predicted by Pomeau [6] on the basis of the Arrhenius-type homogeneous-
nucleation process. A similar model was proposed by Golubovic and Feng [7] and was extended
to fractal dimensions [8].

Although the agreement with the Arrhenius plot was excellent, the authors of refs. [1–5]
found two somewhat annoying results: The distribution of times for the same stress did not
follow a Poissonian curve as was expected, and the temperature dependence of breaking times
under loads with constant increasing rates was deemed strange in that it apparently showed
an ambient temperature of ∼ 3000K instead of ∼ 300K in which they were working.

A heterogeneous nucleation approach will be presented here and shown to a) render fracture
nucleation easier, b) reproduce the Arrehenius plot, c) relate to the temperature problem and
d) predict a time distribution form which depends on temperature.

Homogeneous vs. non-homogeneous nucleation. – For the sake of completeness, we re-
peat and present here the homogeneous-nucleation approach of Pomeau [6]. The calculations
are performed schematically only for the two-dimensional (2D) case and the results for the
3D case are then presented directly. We consider nucleation under stress of a Griffith flaw,
i.e. the appearance of a flaw large enough to fulfill the Griffith criterion for rapid fracture.
Nucleation is accomplished by thermal fluctuations, via an Arrhenius-type process. Assuming
homogeneous nucleation, the rate of appearance of a critical flaw is given by [6] as

ν = ν0 exp[−W/(kT )], (1)
c© EDP Sciences
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Fig. 1 – A schematic “2D” homogeneous nucleation of a crack of length l in an infinite plate under
remote tensional stress σ.

where ν0 is a normalizing rate, k is the Bolzmann constant, T is the absolute temperature and
W is the needed enthalpy. Here we assume that volume and pressure are unchanged in the
process and therefore W becomes the energy barrier needed to be overcome by the process.
This energy is schematically calculated as follows (fig. 1): A fracture of length l in a 2D solid
causes the release of elastic energy, the density of which is σ2

2E per unit volume, from the
volume, shown in fig. 1, surrounding l:

W1
∼= − σ2

2E
πl2b, (2)

where σ is the stress field in the medium, E is the Young modulus and b is the thickness
(assumed small with respect to the other dimensions) of the sample. The energy needed to
create the two new surfaces is

W2 = 2Γlb, (3)

where Γ is the surface energy. The total energy is therefore

W = − σ2

2E
πl2b + 2Γlb. (4)

Figure 2a depicts W as a function of l. The maximum Wm of W occurs for lm = 2ΓE
πσ2 and is

Wm =
2Γ2Eb

πσ2
. (5)

If no flaws exist in the material (homogeneous nucleation), the energy for the creation of a
Griffith flaw equals Wm, and hence the rate of nucleation of such flaws should be

ν = ν0 exp
[ − σ2

0/σ2
]
, (6)

where σ2
0
∼= 2Γ2Eb

πkT .
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Fig. 2 – Total energy (relieved elastic and surface energies) as a function of l. (a) 2D case, (b) 3D case.

In three dimensions (3D) a similar calculation leads to a total energy given (fig. 2b) by

W = − σ2

2E

(
4
3
πl3

)
+ 2Γπl2. (7)

Its maximal value occurs for lm = 2ΓE/σ2 and is

Wm =
8
3
π
Γ3E2

σ4
. (8)

The nucleation rate becomes

ν = ν0 exp
[ − σ4

0/σ4
]
, σ4

0 =
8πΓ3E2

3kT
. (9)

Under a constant load which is below the critical stress, the times to failure for 2D and 3D
materials are given by the reciprocals of the rates, namely,

τ2 = τ02 exp
[
σ2

0/σ2
]

(10)

and
τ3 = τ03 exp

[
σ4

0/σ4
]
, (11)

respectively. Here τ02 and τ03 are characteristic times, equal to the (1/ν0)’s for 2D and 3D,
respectively. Note that the dependence on σ, especially for the 3D case, is very strong: a small
change in σ can lead to a large change in τ . Therefore, the measurements must be done very



972 EUROPHYSICS LETTERS

Fig. 3 Fig. 4

Fig. 3 – The lowering of the time to failure for an existing crack of length a0 in a 3D sample due to the
decrease of the energy barrier. The value a0 = 0 is for homogeneous nucleation. Here lm = 1.3·10−5 cm
above which τ = τ0.

Fig. 4 – Time to failure (for wood, τ0 = 50.5 s), τ , vs. 1/P 4: our results (solid line), experimental
results (*) (ref. [4]) and a best-fit line (dashed) for the experimental results (ref. [4]).

delicately to avoid a situation where the material either breaks immediately or does not break
at all (the time to failure is above that of the experiment). Ciliberto’s group [1–5] succeeded
in obtaining very accurate measurements and verify the τ(σ) behavior for 3D fractures (see,
e.g., their results in fig. 4).

These are the results [6] of homogeneous nucleation, namely, the thermal fluctuations were
supposed to overcome an energy barrier which started from zero —thus completely disre-
garding the existing flaw distribution in the material. Next, the non-homogeneous thermal
nucleation of fracture is treated, i.e. nucleation where the stressed sample contains internal
(or surface) flaws, which reduce the energy barrier.

The calculation is carried out for the three-dimensional case. Results can easily be extended
to solids of other dimensions. The assumption is, therefore, that at the moment of loading the
sample already possesses a flaw distribution. The length component of any flaw, perpendicular
to the highest principal stress direction, is denoted by a. According to fig. 2b the barrier
becomes smaller since thermal fluctuations need only to augment an existing flaw from a0,
say, to lm, rather than create a crack of length lm from the start. The energy barrier is now
given by (fig. 2b) W = Wm − W0, where

W0 = −2
3
π

σ2

E
a3
0 + 2πΓa2

0 . (12)

The value of W0 is larger than zero for a0 < lm. The time to fracture under such conditions
is therefore

τ = τ0 exp
[
1

kT

[
γ/σ4 + ασ2a3

0 − βa2
0

]]
, (13)

where
α =

2
3
π/E, β = 2πΓ, γ =

8
3
πΓ3E. (14)

Clearly, eq. (13) shows that flaws facilitate failure. Thus, denoting by τ1 = τ0 exp[γ/(σ4kT )]
the Pomeau result (eq. (9)), fig. 3 depicts the decrease in τ with a0 (0 ≤ a0 ≤ lm) from τ1 to τ0.
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Fig. 5 – Time to failure (for wood) for a linearly increasing stress as a function of stress rate Ap.
(a) a0 = 0, simulating Guarino et al. [4] results. (b) Averaged times for a0 chosen according to eq. (15).

Now, the most “important” flaw in a sample, the one for which the barrier is the smallest
and hence leads to the shortest time to fracture if augmented, is the flaw with the longest a0.
Denoting the length of this flaw by al, eqs. (12) and (13) (with al replacing a0) provide the
lowest-energy barrier and the shortest (hence the measured) time to fracture, respectively.

According to the statistics of extreme values [9, 10], the longest cracks can have only one
of three distributions, Gumbel, Frechet or Weibull. Since the “basin of attraction” of the
Gumbel distribution includes the exponential and the Gaussian ones, both of which serve as
possible distributions of flaws [11], it is conceivable that longest flaws here assume the Gumbel
distribution. The probability density function of al is therefore [10] assumed to be

p(al) =
1
q
exp[−(al − µ)/q] exp[− exp[−(al − µ)/q]], (15)

where µ, q are parameters to be determined.
The following procedure was adopted. For specific chosen values of µ and q, an al value

is chosen randomly from the p(al) distribution. The τ for this al is calculated by eq. (13)
for a definite stress σ and temperature T . Note that the choice mechanism can generate al

values which are already above the Griffith criterion. For these cases τ is chosen to be τ0

(see eq. (13)). In this way a histogram of τ ’s for these values of σ and T is obtained, from
which the average τ̄ of τ under these conditions is calculated. Changing σ for the same T ,
these averages are drawn as a function of σ, τ̄(σ). This procedure is repeated for different µ
and q values, until the τ̄(σ) agrees with the experimental results, at which point the values
of µ and q are considered to be the correct ones for the flaw distribution. Results for wood
are shown in fig. 4. Here (Guarino et al., 2002), E = 1.8 · 108 New/m2, T = 300K, hence
kT = 4 · 10−21 J, Γ = 5.9 · 10−6 J/m2 yielding α = 1.16 · 10−10 m2/New, β = 3.76 · 10−5 J/m2

and γ = 5.8 · 105 (mks). It is seen that, although ln(τ) of eq. (13) is no longer directly
proportional to 1/σ4, the changes are minimal and the agreement with experiment is good.

A straightforward understanding of the situation can be obtained by considering ln τ as
function of x = 1/σ4. By eq. (13) we obtain

ln τ = c+
1

kT

(
γx+

αa3
0√
x

)
, (16)
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Fig. 6 – Time-to-failure distributions for various temperatures (for fiberglass, τ0 = 2.7 s). (a) Exper-
imental results (ref. [4]), T ∼= 300 K (b), (c), (d): results of our calculations (eqs. (13) and (15)) for
T = 300 K, 400K, 500 K, respectively.

where c = τ0 exp[−βa2
0/kT ]. Hence ln τ has a minimum at

x1 =
1
σ4

1

=
(

α

2γ

)2/3

a2
0 (17)

below which it diverges. Therefore, if the stress values used in the experiment are much larger
than σ1, then ln τ would still follow a straight line. For fig. 4, the largest experimental σ or
(P ) is ∼ 0.7 atm while for our simulations a0 = 1.2 · 10−6 cm and therefore σ1 ≈ 3.5 atm.

A second experiment, analyzed, e.g., in ref. [4], is where a load, which is linearly increasing
with time (σ = Apt for a constant Ap), is applied to different samples until they fail. The
breaking times are drawn as a function of Ap in a log-log plot yielding a straight line. In the
experiment [4] two temperatures were used, 300K and 380K, with almost no difference in the
obtained straight lines. On the basis of this invariance, the investigators concluded that there
was something amiss, and invoked [5] fiber bundle theory to explain this apparent difficulty.

The difficulty is, however, only a sham difficulty as can be seen from the following “nu-
merical experiment”. First, we follow the method used in [4] to treat breaking time problems
where the stress changes with time. Regard [4] the variable 1/τ (either of eq. (11) for ho-
mogeneous or eq. (13) for non-homogeneous nucleation) as the “density of damage” per unit
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time. Breaking is certain to occur after a time τ∗, if

∫ τ∗

0

1
τ(t)

dt = 1. (18)

We now apply eq. (18) to find τ∗ numerically by integrating eq. (11) with σ = Apt, or perform a
similar calculation using eq. (13) with an appropriate choice process (of al) as described before.
We obtain (fig. 5) the “surprising” result that, in both cases, results are almost independent
of temperature. The results of Guarino et al. (ref. [4], fig. 8) are therefore completely natural
and in line with both the homogeneous– and non-homogeneous–nucleation theories.

We now turn to the time distribution function. Experimental results for fiberglass (ref. [4],
fig. 6) show a distribution which is definitely neither Poissonian nor Gaussian. Using eq. (13)
and choosing al values randomly according to eq. (15), a series of τ values is thereby generated.
In this way we calculated τ -distribution functions of fiberglass for several temperatures. Here
E = 1010 New/m2, Γ = 3.17 · 10−7 J/m2, τ = 2.7 s yielding α = 2.09 · 10−12 New/m2, β =
1.99 · 10−6 J/m2, γ = 2.66 · 105 (mks) and kT = 4 · 10−21 J, 5.33 · 10−21 J, 6.67 · 10−21 J for
T = 300, 400, 500K, respectively. Distribution results are shown in fig. 6 for different values
of temperature. It is seen that a) the distribution function for 300K is very similar to the
experimental results (compare figs. 6a and b). b) The change of distribution function with
temperature is interesting. Thus, a relatively small temperature increase causes the “balance”
of the distribution to move somewhat towards shorter times, while a large increase (in fig. 6
from 300K, say to 500K) causes the distribution to become quite concentrated near τ0.

It is therefore seen that thermal nucleation [6, 7] is indeed the process behind failure of
heterogeneous samples under creep conditions. An improvement of the theory by the use of
non-homogeneous nucleation, where account is taken of the existing flaw distribution inside
the sample, leads to easier fracture and to a prediction of the change of lifetime distribution
with temperature.
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