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Abstract. – We demonstrate that networks of locally connected processing units with a prim-
itive learning capability exhibit a behavior that is usually only attributed to quantum systems.
We describe networks that simulate single-photon beam splitter and Mach-Zehnder interferom-
eter experiments on a causal, event-by-event basis and demonstrate that the simulation results
are in excellent agreement with quantum theory.

Introduction. – The objective of the research reported in this paper is to demonstrate
that locally connected networks of processing units with a primitive learning capability are
sufficient to simulate, event by event, the single-photon beam splitter and Mach-Zehnder
interferometer experiments of Grangier et al. [1]. This is one of the basic experiments in
quantum physics [1, 2] that has not been simulated in the event-by-event manner in which
the experimental observations are actually recorded [3]. Although quantum theory gives us a
recipe to compute the frequency for observing different types of events, it does not describe
individual events [2, 4, 5]. Reconciling the mathematical formalism (that does not describe
single events) with the experimental fact that each observation yields a definite outcome
is often referred to as the quantum measurement paradox. This is a central, fundamental
problem in the foundation of quantum theory [5–7].

From a computational viewpoint, quantum theory provides us with a set of rules (algo-
rithms) to compute probability distributions [5, 8, 9]. Therefore, we may wonder what kind
of algorithm(s) we need to perform an event-based simulation of the experiments mentioned
above without using wave functions. Evidently, this formulation rules out any method based
on the solution of the (time-dependent) Schrödinger equation. We have to step outside the
framework that quantum theory provides.
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Fig. 1 – Diagram of a SLM that performs an event-by-event simulation of a single-photon beam
splitter (BS). The solid lines represent the input and output channels of the BS. The dashed lines
indicate the flow of data within the BS.

We formulate the simulation of quantum processes in terms of events, messages, and units
that process these events and messages. In terms of the experiments of Grangier et al. [1], the
photon carries the message (a phase), an event is the arrival of a photon at one of the input
ports of a beam splitter, and the beam splitters are the processing units. The essential feature
of a processing unit is its ability to learn from the events it processes. We use a standard
linear adaptive filter [10] for this purpose. The processing unit sends a message (carried by
a photon) through an output port that is selected randomly according to a distribution that
is determined by the current state of the processing unit. A processing unit that operates
according to this principle will be referred to as a stochastic learning machine (SLM). Here
the term stochastic does not refer to the learning process but to the method that is used to
select the output channel that will carry the outgoing message. The learning process itself is
deterministic. Elsewhere we describe processing units that are fully deterministic and are not
based on linear adaptive filters, but can be used for exactly the same purpose and also for
simulating many-body quantum phenomena [11–14].

By connecting an output channel to the input channel of another SLM we can build
networks of SLMs. As the input of a network receives an event, the corresponding message
is routed through the network while it is being processed. At any given time during the
processing, there is only one input-output connection in the network that is actually carrying
a message. The SLMs process the messages in a sequential manner and communicate with
each other by message passing. There is no other form of communication between different
SLMs. Although networks of SLMs can be viewed as networks that are capable of unsupervised
learning, they have little in common with neural networks [15].
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Beam splitter. – According to quantum theory [9], the amplitudes (b0, b1) of the photons
in the output modes 0 and 1 of a beam splitter (see fig. 1) are given by

(
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b1

)
=

1√
2

(
a0 + ia1

a1 + ia0

)
=

1√
2

(
1 i
i 1

)(
a0

a1

)
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where the presence of photons in the input modes 0 or 1 is represented by the amplitudes
(a0, a1) [1, 16–18]. Here we construct a SLM that acts as a beam splitter, not by calculating
the amplitudes according to eq. (1) but by processing individual events (photons). First we
describe the various components of the machine. Then we demonstrate that it acts as a
beam splitter.

A schematic diagram of the SLM is shown in fig. 1. We label events by a subscript n ≥ 0.
At the (n + 1)-th event, the SLM receives a message on either input channel 0 or 1, never on
both channels simultaneously. If the event occurs on channel 0 (1) we call it an event of type
0 (1). Every message is a two-dimensional unit vector yn+1 = (y0,n+1, y1,n+1). This message
represents the time of flight, that is the length of the optical path of the photon when it travels
from source to beam splitter, from beam splitter to beam splitter and the like. In quantum
theory, this information is encoded in the phases of the complex numbers a0 and a1.

The first stage (see fig. 1) of the SLM (called front-end) stores the message yn+1 in its
internal register Yk = (Y0,k, Y1,k), where k = 0 (1) if the event occurred on channel 0 (1).
The front-end also has an internal two-dimensional vector x = (x0, x1) with the additional
constraints that xi ≥ 0 for i = 0, 1 and that x0 + x1 = 1. Here and in fig. 1, we have omitted
the event label n from the internal register Yk and internal vector x to simplify the notation.

After receiving the (n+1)-th event on input channel k = 0, 1 the internal vector is updated
according to the rule

xi,n+1 = αxi,n + (1 − α)δi,k , (2)

where 0 < α < 1 is a parameter that controls the learning process and is discussed later. By
construction xi,n+1 ≥ 0 for i = 0, 1 and x0,n+1 + x1,n+1 = 1. Hence, the update rule eq. (2)
preserves the constraints on the internal vector. These constraints are necessary if we want to
interpret the xk,n as (an estimate of) the probability for the occurrence of an event of type k.

The solution of eq. (2) reads

xn = αnx0 + (1 − α)
n−1∑
i=0

αn−1−ivi+1 , (3)

where xn = (x0,n, x1,n), and x0 denotes the initial value of the internal vector. The input
events are represented by the vectors vn+1 = (1, 0)T or vn+1 = (0, 1)T if the (n + 1)-th event
occurred on channel 0 or 1, respectively. Let p0 (p1 = 1−p0) be the probability for generating
statistically independent events of type 0 (1) and let 〈x〉n = (x1+. . .+xn)/n denote the Cesaro
mean of the sequence {x1, . . . ,xn}. Then, if 0 < α < 1, we have limn→∞〈x〉n = (p0, 1− p0)T .
Therefore, the front-end “learns” the probabilities for events 0 and 1 by processing these
events in a sequential manner.

The second stage of the SLM in fig. 1 takes as input the values stored in the registers Y0,
Y1, x and transforms this data according to the rule
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Fig. 2 – Simulation results for the beam splitter shown in fig. 1. Input channel 0 receives (cosψ0, sinψ0)
with probability p0. Input channel 1 receives (cosψ1, sinψ1) with probability p1 = 1− p0. Each data
point represents 10000 events (N0+N1 = 10000). After each set of 10000 events, two uniform random
numbers in the range [0, 360] are used to choose the angles ψ0 and ψ1. Markers give the simulation
results for the normalized intensity N0/(N0 + N1) in output channel 0 as a function of φ = ψ0 − ψ1.
Open circles: p0 = 1; bullets: p0 = 0.5; open squares: p0 = 0.25. Lines represent the results of
quantum theory (see eq. (6)). Left: α = 0.98; right: α = 0.25.

where we have omitted the event label (n + 1) to simplify the notation. Using two complex
numbers instead of four real numbers, eq. (4) can also be written as
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By identifying a0 with Y0,0
√

x0 + iY1,0
√

x0 and a1 with Y0,1
√

x1 + iY1,1
√

x1, it is clear that
the transformation eq. (5) plays the role of the matrix-vector multiplication in eq. (1).

The third stage (see fig. 1) of the SLM (called back-end) responds to the input event
by sending a message wn+1 = (Y0,0

√
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√
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1,n+1 < r, where 0 < r < 1 is a uniform random number.
Otherwise, since w2
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2 through output channel 1.
In fig. 2 we present results of event-based simulations using the SLM depicted in fig. 1.

Before the simulation starts we set x0 = (x0,0, x1,0) = (r, 1− r), where r is a uniform random
number in the interval [0, 1]. We also use uniform random numbers to generate two two-
dimensional unit vectors to initialize the registers Y0 and Y1. The simulation results of the left
and right panel were obtained for α = 0.98 and α = 0.25, respectively. Input channel 0 receives
(cos ψ0, sin ψ0) with probability p0. Input channel 1 receives (cos ψ1, sin ψ1) with probability
p1 = 1 − p0. In the quantum theory setting, this corresponds to the input amplitudes a0 =√

p0e
iψ0 and a1 =

√
1 − p0e

iψ1 . The data in fig. 2 show the normalized intensity N0/(N0+N1),
where N0 (N1) denotes the number of events of type 0 (1), as a function of φ = ψ0−ψ1. Each
data point in fig. 2 represents a simulation of 10000 events (N0 +N1 = 10000). For each set of
10000 events, two uniform random numbers in the range [0, 360] determine the two angles ψ0

and ψ1. From fig. 2, it is clear that the SLM-based beam splitter reproduces the probability
distributions

|b0|2 =
1 + 2

√
p0(1 − p0) sin(ψ0 − ψ1)

2
, |b1|2 =

1 − 2
√

p0(1 − p0) sin(ψ0 − ψ1)
2

, (6)

as obtained from eq. (1).



H. De Raedt et al.: Event-based simulation of single-photon etc. 865

Role of the control parameter α. – From eq. (2), we see that α controls the speed of
learning. Furthermore, it is evident that the difference between a constant input to a SLM
and the learned value of its internal variable cannot be smaller than 1−α. In other words, α
also limits the precision with which the internal variable can represent a sequence of constant
input values. On the other hand, the number of events N has to balance the rate at which the
SLM can forget a learned input value. The smaller 1 − α is, the larger the number of events
has to be for the SLM to adapt to changes in the input data. Simulations (results not shown)
show that the error decreases as 1/

√
N , as expected from elementary statistics.

In general, for a fixed number of events, decreasing α leads to an increase of systematic
errors. For instance, if α = 1/4, the maximum normalized intensity (at φ = 90) in output
channel 0 is about 0.8, as shown in fig. 2 (right). This is easy to understand: In our event-
by-event approach, interference is the result of learning by the SLMs. If α is close to unity,
the SLM learns slowly but accurately. If α decreases, the SLM can adapt faster to changes
in the input data but it also forgets faster. For very small α, xn is always close to (1, 0)T

or (0, 1)T and it becomes impossible to mimic quantum interference. Thus, α determines the
visibility [1] of the interference effects. In our simulation approach, interference is the result
of learning (which requires some form of memory).

Mach-Zehnder interferometer. – In quantum physics [9], single-photon experiments with
one beam splitter provide direct evidence for the particle-like behavior of photons [1, 5]. The
wave mechanical character appears when one performs single-particle interference experi-
ments. We now describe a SLM network that displays the same interference patterns as those
observed in single-photon Mach-Zehnder interferometer experiments [1]. This also proves that
the messages generated by the SLMs preserve the phase information that is essential if the
system is to exhibit quantum mechanical behavior.

The schematic layout of the SLM network is shown in fig. 3. Not surprisingly, it is exactly
the same as that of a real Mach-Zehnder interferometer. The SLM network described before

( )
1

φR

( )
0

φR
0 0

1

0

1

0
N

1
N

2
N

3
N

1

Fig. 3 – Diagram of a SLM network that simulates a single-photon Mach-Zehnder interferometer
on an event-by-event basis [14]. The SLM network consists of two BS devices (see fig. 1) and two
passive devices R(φ0) and R(φ1) that perform plane rotations by φ0 and φ1, respectively. The
number of events Ni in channel i = 0, . . . , 3 corresponds to the probability of finding a photon on the
corresponding arm of the interferometer.
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Fig. 4 – Simulation results for the SLM-network shown in fig. 3. Input channel 0 receives
(cosψ0, sinψ0) with probability one. A uniform random number in the range [0, 360] is used to
choose the angle ψ0. Input channel 1 receives no events. Each data point represents 10000 events
(N0 + N1 = N2 + N3 = 10000). Initially, the rotation angle φ0 = 0 and after each set of 10000
events, φ0 is increased by 10◦. Markers give the simulation results for the normalized intensities as a
function of φ = φ0 −φ1. Open squares: N0/(N0 +N1); solid squares: N2/(N2 +N3) for φ1 = 0; open
circles: N2/(N2+N3) for φ1 = 30◦; bullets: N2/(N2+N3) for φ1 = 240◦; asterisks: N3/(N2+N3) for
φ1 = 0; solid triangles: N3/(N2 + N3) for φ1 = 300◦. Lines represent the results of quantum theory
(see eq. (8)). Left: α = 0.98; right: α = 0.25, see the section on the role of α.

is used for the two beam splitters in fig. 3. The phase shift is taken care of by a passive device
that performs a plane rotation. Clearly, there is a one-to-one mapping from each physical
component in the interferometer to a processing unit in the SLM network. The processing
units in the SLM network only communicate with each other through the messages (photons)
that propagate through the network.

According to quantum theory [9], the amplitudes (b0, b1) of the photons in the output
modes 0 (N2) and 1 (N3) of the Mach-Zehnder interferometer are given by [1,16–18]

(
b0

b1

)
=

1
2

(
1 i
i 1

)(
eiφ0 0
0 eiφ1

)(
1 i
i 1

)(
a0

a1

)
. (7)

Note that in a quantum mechanical setting it is impossible to simultaneously measure (N0/
(N0 + N1), N1/(N0 + N1)) and (N2/(N0 + N1), N3/(N0 + N1)): Photon detectors operate by
absorbing photons. In our event-based simulation there is no such problem.

In fig. 4 we present a few typical simulation results for the Mach-Zehnder interferometer
built from SLMs. We assume that input channel 0 receives (cos ψ0, sin ψ0) with probability one
and that input channel 1 receives no events. This corresponds to (a0, a1) = (cos ψ0+i sin ψ0, 0).
We use a uniform random number to determine ψ0. The data points are the simulation results
for the normalized intensity Ni/(N0 + N1) for i = 0, 2, 3 as a function of φ = φ0 − φ1. Lines
represent the corresponding results of quantum theory [9]. From fig. 4 (left) it is clear that
the event-based processing by the SLM network reproduces the probability distribution

|b0|2 = sin2

(
φ0 − φ1

2

)
, |b1|2 = cos2

(
φ0 − φ1

2

)
, (8)

as obtained from eq. (7). The results of fig. 4 (right) for α = 1/4 corroborate the analysis of
the role of α, presented earlier.
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Discussion. – We have proposed a new procedure to construct algorithms that can be
used to simulate quantum processes without solving the Schrödinger equation. We have shown
that single-particle quantum interference can be simulated on an event-by-event basis using
local and causal processes, without using concepts such as wave fields or particle-wave duality.
Our results suggest that we may have discovered a procedure to simulate quantum phenomena
using causal, local, and event-based processes. There is a one-to-one correspondence between
the parts of the processing units and network and the physical parts of the experimental
setup. Only simple geometry is used to construct the simulation algorithm. In this sense, the
simulation approach we propose satisfies Einstein’s criteria of realism and causality [5]. Our
approach is not an extension of quantum theory in any sense and is not a proposal for another
interpretation of quantum mechanics. The probability distributions of quantum theory are
generated by a particle-like, causal learning process, and not vice versa [7].
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