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PACS. 71.10.Fd – Lattice fermion models (Hubbard model, etc.).

PACS. 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger
liquid, etc.).

Abstract. – The Hubbard model with boundary hopping integrals and fields is proposed and
solved exactly by means of the Bethe ansatz method. We find that for certain values of the
boundary hopping integrals and fields the ground state contains boundary bound states, these
new types of states are represented as “boundary charge and spin strings”. We show that the
boundary bound states are realized at a strong boundary interaction for large values of the
boundary hopping integrals or the boundary fields. The magnetic moment and charge of the
boundary have been calculated numerically as a function of the magnetic field and band filling.
It is found that the “boundary charge strings” solutions define the properties of the boundary.

Dedicated to Alexander Ovchinnikov’s memory

Attempts to study effects due to the presence of the boundary conditions in many-body
quantum systems in the framework of integrable models have a long successful history [1–3].
Quantum impurity models such as the Kondo model and the Anderson model also have deep
connection with the boundary problem. Recent progress in the experimental study of low-
dimensional materials, e.g. spin ladders, carbon nanotubes [4], quantum wires [5], has been
an additional source of motivation to investigate one-dimensional exactly solvable models.
The Hubbard model is marked among integrable models since many interesting statistical-
mechanical systems can be described in the framework of this model. Most of the literature
on the one-dimensional Hubbard model is based on the seminal paper of Lieb and Wu [6] (see
the review [7] too); the authors solved the model and showed that the system at half-filling is
an insulator for arbitrary repulsive interaction.

The purpose of this letter is to study new types of strings corresponding to boundary bound
states in the framework of a new integrable version of the Hubbard model with boundary
hoppings and fields. We identify boundary bound states with new solutions of the Bethe
ansatz equations called “boundary charge and spin strings”. Note that the boundary bound
state is realized in the case of a strong boundary interaction [3]. The peculiar properties of the
model proposed follow from the interaction of fermions with boundaries. The Hamiltonian
c© EDP Sciences
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contains the host and boundary terms H = HHub +Hb,

HHub = −
L−2∑
j=2

∑
σ=↑,↓

(
c†jσcj+1σ + c

†
j+1σcjσ

)
+ U

L−1∑
j=2

nj↑nj↓ , (1)

Hb = −t1
∑

σ=↑,↓

(
c†1σc2σ + c

†
2σc1σ

)
+ h1n1 − tL

∑
σ=↑,↓

(
c†LσcL−1σ+ c

†
L−1σcLσ

)
+ hLnL , (2)

where c†jσ and cjσ are creation and annihilation operators of fermions with spin σ = ↑, ↓
at lattice site j, the particle number operator for electrons is defined by njσ = c†jσcjσ and
nj =

∑
σ=↑,↓ njσ, L is the length of the chain. The hopping integral in (1) is equal to unity,

U is the on-site Coulomb repulsion, h1,L and t1,L are the boundary fields and boundary
hopping integrals, respectively. The kinetic terms of the Hamiltonian H are electron-hole
invariant: indeed applying the combined electron-hole symmetry c†jσ → (−1)jcjσ we obtain
H(1, U, t1, tL, h1, hL)→ H(1, U, t1, tL,−h1,−hL)+U(L−N)+h1+hL. Hence we can restrict
our consideration to the case N ≤ L for different boundary fields: h1, hL and −h1, −hL

correspond to N ≤ L and L ≤ N ≤ 2L, respectively, N is the total number of electrons.
Below we present the exact solution of the model (1), (2) obtained by the Bethe ansatz. The

eigenvector |ψ〉 with N particles is defined as |ψ〉 = ∑
{(xj ,σj)} ψσ1,...,σN

(x1, . . . , xN )|x1σ1, . . . ,
xNσN 〉, where the Bethe function takes a traditional form:

ψσ1,...,σN

(
xQ1, . . . , xQN

)
=

∑
P

(−1)PAσ1,...,σN

(
xQ1, . . . , xQN

)
exp

[
i

N∑
j=1

kPjxQj

]
, (3)

where the P summation extends over all the permutation of the momenta {kj}, and Q =
{Q1, . . . , QN} is the permutation of theN particles such that the coordinates satisfy 1 ≤ xQ1 ≤
. . . ≤ xQN ≤ L. The coefficients Aσ1,...,σN

(xQ1, . . . , xQN ) arising from different permutation
Q are connected via the scattering matrices as follows: A...,σj ,σi,...(. . . , xj , xi, . . .) = Sij(ki, kj)
A...σj ,σi,...(. . . , xi, xj , . . .), Aσj ...(−xj , . . .) = RL(kj)A...σj

(xj , . . .), A...σj
(. . . ,−xj) = RR(kj)×

A...σj
(. . . , xj), where the scattering matrices are given by

Sij(ki, kj) =
sin ki − sin kj + iuPij

sin ki − sin kj + iu
,

RL(kj) = exp
[
2ikj

] (2− τ1) cos kj + h1 − iτ1 sin kj

(2− τ1) cos kj + h1 + iτ1 sin kj
,

RR(kj) = exp
[
2ikjL

] (2− τL) cos kj + hL + iτL sin kj

(2− τL) cos kj + hL − iτL sin kj
;

here u = U
2 , τ1,L = t21,L and Pij is the usual spin permutation operator.

According to the model Hamiltonian (1), (2) the boundary interactions are one-particle
ones, since two particles with different spins do not interact on lattice sites 1 and L, they
interact for 2 ≤ j ≤ L − 1 only; as a result the Schrödinger equation for the two-particle
wave function ψσ1σ2(x1, x2) on the boundaries is reduced in fact to the following one-particle
equations. For example, the Bethe function (3) is the solution of the equations E2ψσ1σ2(1, 2) =
−ψσ1σ2(1, 3)− t1ψσ1σ2(1, 1)− t1ψσ1σ2(2, 2) + h1ψσ1σ2(1, 2), E2ψσ1σ2(1, 1) = −t1ψσ1σ2(2, 1)−
t1ψσ1σ2(1, 2) + 2h1ψσ1σ2(1, 1) for E2 = −2 cos k1 − 2 cos k2 and an arbitrary two-particle S-
matrix, since the corresponding equations for the one-particle Bethe function have the similar
form E1ψσ(2) = −ψσ(3)− t1ψσ(1), E1ψσ(1) = −t1ψσ(2) + h1ψσ(1), where E1 = −2 cos k1.
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Since the boundary scattering matrices (RR,L matrices) do not depend on the spin vari-
ables, the model has been solved for arbitrary values of the boundary hoppings and fields. We
diagonalize the Hamiltonian (1), (2) following standard Bethe ansatz techniques developed
for open chain [1]. We introduce the spin rapidities λα(α = 1, . . . ,M) and write the Bethe
ansatz equations in the following form:

RR(kj)RL(−kj) =
M∏

α=1

sin kj − λα + i
2u

sin kj − λα − i
2u

sin kj + λα + i
2u

sin kj + λα − i
2u
, (4)

N∏
j=1

λα − sin kj + i
2u

λα − sin kj − i
2u

λα + sin kj + i
2u

λα + sin kj − i
2u

=
M∏

β=1

λα − λβ + iu
λα − λβ − iu

λα + λβ + iu
λα + λβ − iu , (5)

where M is the number of down-spin electrons.
In the thermodynamic limit the ground state of the Hubbard model is made of the real

solutions for momenta and spin rapidities kj and λα [7]. Let us turn to the new solutions of
eqs. (4), (5) called as boundary strings. Boundary excitations have their wave function (3)
localized at the left or the right ends, and in the L→ ∞ limit the two ends may be considered
separately. The basis of the “boundary charge string solutions” consists of two sets (denoted
as α = 1, 2) of the solutions of eqs. (4) for the charge rapidities that correspond to each
boundary (β = L,R):

k
(α)
β± = iK(α)

β± + ε(α)β± , ε
(α)
β± ∼ exp

[
− δ(α)β±L

]
, δ

(α)
β± > 0.

It is convenient to use the following parameterization for the boundary coupling constants
coth ηβ =

τβ

2−τβ
at τβ > 1 and sinh∆β = h̃β , h̃β = 2hβ

√|τβ − 1|, then the “boundary charge
solutions” are defined as K(1)

β± = ±(ηβ +∆β) at ηβ +∆β < 0, and K(2)
β± = ±(ηβ −∆β)− iπ at

ηβ −∆β < 0; for τβ < 1 tanh ηβ =
τβ

2−τβ
the solutions have the form K(1)

β± = −iπ± (ηβ +∆β),

at ηβ + ∆β < 0, and K(2)
β± = −iπ ± (ηβ − ∆β), at ηβ − ∆β < 0, where cosh∆β = h̃β at

h̃β ≥ 1; K(1)
β± = ±(ηβ + ∆β), ηβ + ∆β < 0, and K(2)

β± = ±(ηβ −∆β), at ηβ −∆β < 0, where
cosh∆β = −h̃β at h̃β ≤ −1.

New “boundary spin string solutions” of the Bethe ansatz equations (5) exist in a strong
spin coupling regime for u < 2|Λ(α)β |:

λ
(α)
βn± = ±iS(α)β + i

u

2
(n+ 1− 2p) + ε(α)βn± for p = 1, 2, . . . , n,

where S(α)β = |Λ(α)β | − u
2 , Λ

(α)
β = sinh(K(α)

β+), ε
(α)
βn± ∼ exp[−γ(α)βn±L], γ

(α)
βn± > 0. Note that

the “boundary strings” can appear only in the case of strong boundary interactions. One
branch of the solutions exists for 1 < τβ < 2 and an arbitrary value of h̃β , or τβ < 1 and
|h̃β | > 1, and two branches for τβ > 2. In the case of a weak interaction for τβ < 1 and
|h̃β | < 1 no such solutions exist. The “boundary charge string solutions” correspond to the
poles in the physical sheet of the boundary scattering matrices. The boundary bound states
describe coupled pairs of the particles, each branch of the charge and spin rapidities is double
and n degenerated, respectively. The “boundary spin string solutions” meet the formation
of the local moment of the boundary. Numerical calculations show that stable “boundary
n-spin string solutions”, that correspond to the minimum of the surface ground-state energy,
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are realized if un < u ≤ un−1; here un = 2S(α)β /n. We will consider the case of a weak spin

coupling regime u > 2|Λ(α)β |, when the “boundary spin string solutions” do not exist.
Taking logarithms of the Bethe equations (4), (5) and afterward performing the thermody-

namic limit, we are able to obtain the integral equations of the Fredholm type for the distri-
bution functions ρ̃(k) and σ̃(λ) for the k and λ variables. The presence of new solutions in the
Bethe equations, that account for the “boundary strings”, deforms the distribution charge and
spin rapidities and modifies their distribution functions by the terms 1

Lδρ
(α)
β (k) and 1

Lδσ
(α)
β (λ)

(ρ̃(k) = ρ(k) + 1
L

∑
α=1,2

∑
β=L,R δρ

(α)
β (k) and σ̃(λ) = σ(λ) + 1

L

∑
α=1,2

∑
β=L,R δσ

(α)
β (λ)).

The distribution functions δρ(α)β (k) and δσ(α)β (λ) satisfy the integral equations

δρ
(α)
β (k)− cos k

∫ Λ

−Λ
dλau(sin k − λ)δσ(α)β (λ) = 0,

δσ
(α)
β (λ) +

∫ Λ

−Λ
dλ′a2u(λ− λ′)δσ(α)β (λ′)−

∫ Q

−Q

dkau(λ− sin k)δρ(α)β (k) =

2
[
a

u+2Λ
(α)
β

(λ) + a
u−2Λ(α)

β

(λ)
]
, (6)

where au(λ) = u
2π

1
λ2+(u/2)2 . The driving terms in (6) are the result of the “boundary charge

string solutions”.
Equations for the ρ(k) and σ(λ) distribution functions have the following form:

ρ(k)− cos k
∫ Λ

−Λ
dλau(sin k − λ)σ(λ) = 1

π
− 1
L

[
1
π
+ cos kau(sin k)− gL(k)− gR(k)

]
,

σ(λ) +
∫ Λ

−Λ
dλ′a2u(λ− λ′)σ(λ′)−

∫ Q

−Q

dkau(λ− sin k)ρ(k) =
1
L
a2u(λ), (7)

where gβ(k) =
τβ

π
2−τβ+hβ cos k

τ2
β+h2

β+2hβ(2−τβ) cos k+4(1−τβ)cos2k
.

The k-Fermi level denotes as Q controls the band filling and the density of fermions
n = N/L is defined by n = ñ + 1

Lδn, where ñ =
1
2

∫ Q

−Q
dkρ̃(k), δn = 2

∑
α=1,2

∑
β=L,R ν

(α)
β ,

ν
(α)
β is the number of occupied boundary charge state. The density of the magnetization is

defined by m = 1
2 [ñ − ∫ Λ

−Λ dλσ̃(λ)]. Let us study the behavior of the magnetic moment and
charge of the boundary in the case of the formation of the “boundary charge string solu-
tions” only, namely at a weak spin coupling regime u > 2|Λ(α)β |, when the “boundary charge
string solutions” are stable. The charge of the boundary is defined as nβ = 2

∑
α=1,2 ναβ +

1
2

∑
α=1,2

∫ Q

−Q
dkδρ(α)β (k) + 1

2

∫ Q

−Q
dkδρβ(k), where the first term is the local charge of the

boundary and ρ(k) = ρ0(k) + 1
L

∑
β=L,R δρβ(k), σ(λ) = σ0(λ) +

1
L

∑
β=L,R δσβ(λ), ρ0(k) and

σ0(λ) are the host distribution functions. The magnetic moment of the boundary is equal
to the sum of the following terms: mβ = 1

2

∑
α=1,2[

1
2

∫ Q

−Q
dkδρ(α)β (k) − ∫ Λ

−Λ dλδσ
(α)
β (λ)] +

1
2 [

1
2

∫ Q

−Q
dkδρβ(k) −

∫ Λ

−Λ dλδσβ(λ)] (local charge boundary states form the singlet (nonmag-
netic) state).

Below we consider the host magnetization and the magnetic moment of the boundary in
the weak magnetic field. In the small magnetic-field limit we have Λ → ∞, with increasing
magnetic field the value of Λ decreases monotonically. In the limit of a small magnetic field, for
which Λ� 1 and Q� Λ, these equations can be solved by iteration in the standard way and
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Fig. 1 – Magnetic moment of the boundary as a function of magnetic field at τβ = 1.5, hβ = −0.4 for
n = 0.5 and u = 1 (Hmax = 1.236, curve 1), n = 0.5 and u = 4 (Hmax = 0.472, curve 2), n = 0.75
and u = 1 (Hmax = 2.195, curve 3), n = 0.75 and u = 4 (Hmax = 0.856, curve 4).

Fig. 2 – Charge of the boundary as a function of magnetic field, similar to fig. 1.

we can calculate the value of Λ as a function of the magnetic field H: Λ = −u
π ln(

H
A )+

u
4π ln(H

A )
;

here the scale A = − 1
u

√
2

πe

∫ Q

−Q
dk cos k exp[πu sin k]ε0(k) is defined by the dressed energy

ε0(k), that is the solution of the relevant integral equations for the dressed energies at zero
temperature and H = 0 in the Hubbard model: ε0(k)−

∫ Q

−Q
dk′ cos k′R(sin k− sin k′)ε0(k′) =

µ− 2 cos k; here R(λ) = 1
π

∫ ∞
0
cos(λω) dω

1+exp[uω] , µ is the chemical potential.
The leading contributions to the density of the magnetization of itinerant electrons and

the magnetic moment of the boundary have the form

Mhost =
2
π
TH exp

[
− πΛ
u

] (
1 +

u

4πΛ

)
,

mb =
4
π

√
2
πe

cos
(π
u
Λ(α)β

)
exp

[
− πΛ
u

](
1 +

u

4πΛ

)
; (8)

here the magnetic scale TH =
√

2
πe

∫ Q

−Q
ρ0(k) exp[πu sin k]dk, where ρ0(k) is the host distribu-

tion function at H = 0.
Note that the contribution to the magnetic moment and charge of the boundary defined

by the distribution functions δρ(α)j and δσ(α)j dominates. Numerical calculations of the charge
and magnetic moment of the boundary as a function of the magnetic field and band filling for
several values of the on-site interaction, band filling and magnetic field are shown in figs. 1-4.

The magnetic moment of the boundary increases linearly for small magnetic field and
reaches the maximum value at a saturation field Hmax (see fig. 1) (the field Hmax corresponds
the saturated magnetization of the host, when the ground state becomes ferromagnetic). The
value of Hmax depends on the on-site interaction and the density of electrons and increases
with the band filling. Only magnetic fields below Hmax are considered. The magnetic scale
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Fig. 3 – Magnetic moment of the boundary as a function of band filling at τβ = 1.5, hβ = −0.4 and
u = 1. The individual curves are labeled by the value of an external magnetic field.

Fig. 4 – Charge of the boundary as a function of band filling, similar to fig. 3.

is defined by the ration mb
Mhost

= 2
√

2
πe cos(

π
uΛ

(α)
j )/TH that depends on the band filling. The

value of TH is proportional to the density of electrons for small band filling and increases with
the band filling.

The curves have a universal form in dimensionless fields (see fig. 1). At H = 0 the
magnetic moment of the boundary has a minimal value −1, a maximum value is reached in
a saturation field, it has the same value that does not depend on the host parameters. The
boundary magnetic moment increases with the magnetic field (fig. 1), whereas the charge of
the boundary decreases with magnetic field and reaches an identical minimal value at Hmax

(fig. 2). A similar behavior takes place for the behavior of the magnetic moment of the
boundary as a function of band filling (fig. 3). The magnetic moment of the boundary is a
decreasing function of the band filling shifted in the magnetic field. The “charge boundary
strings” induce an abnormal behavior of the charge of the boundary as a function of the
band filling (fig. 4). The charge of the boundary has a minimal value at extreme electron
densities and a maximum value in the middle of this interval. An external magnetic field
shifts deforming the curves and does not change their behavior.

In summary, we have presented a soluble version of the Hubbard model with boundary
hoppings and fields, leading to a nontrivial behavior. At strong boundary interaction new
solutions of the Bethe equations, that correspond to the “charge and spin boundary rapidities”,
are obtained. We find the criteria of the realization of these solutions, the existence of “charge
and spin boundary solutions” leads to local boundary charge and moment.
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