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PACS. 45.70.-n – Granular systems.
PACS. 45.70.Qj – Pattern formation.

Abstract. – We performed molecular-dynamics simulations to investigate the clustering in-
stability of a freely cooling dilute gas of inelastically colliding disks in a quasi–one-dimensional
setting. We observe that, as the gas cools, the shear stress becomes negligibly small, and the
gas flows by inertia only. Finite-time singularities, intrinsic in such a flow, are arrested only
when close-packed clusters are formed. We observe that the late-time dynamics of this system
are describable by the Burgers equation with vanishing viscosity, and predict the long-time
coarsening behavior.

Introduction. – A gas of hard spheres is a standard model of statistical physics and kinetic
theory [1]. It is surprising that a minor change in this model —the introduction of energy loss
in the binary collisions— leads to consequences so dramatic. Among the many fascinating
properties of the gas of inelastically colliding hard spheres [2], the clustering instability [3, 4]
plays a special role. No matter how small (but finite) is the inelasticity of collisions, the
homogeneous cooling state (HCS) of this gas is always unstable if the system size L is large
enough. When studying macroscopic properties of matter, a physicist deals, first of all, with
the thermodynamic limit L → ∞. From this perspective the gas of elastically colliding hard
spheres is a singular limit of the inelastic gas problem. The practical importance of the
inelastic gas model stems from its being the simplest model of granular flow [2,5, 6].

The clustering instability of a freely cooling inelastic gas involves the formation of clusters
of particles and the generation of vortices [3, 4, 7]. The basic physics of the initial stage of
cluster formation is simple: the inelastic cooling of the gas causes a pressure drop in the
regions of enhanced density. This pressure drop drives an inflow of gas from the periphery
and therefore provides a positive feedback to the instability. A traditional framework for
quantitative theory here is granular hydrodynamics (GH), which assumes scale separation and
is derivable from the Boltzmann equation, properly modified to account for the inelasticity
of collisions [2]. Though the general criteria of its validity remain controversial [8], GH is
well established at least when the following two criteria are met: i) the granular gas is dilute,
nσD � 1, and ii) the particle collisions are nearly elastic, q � 1. Here n is the local number
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density of the gas, σ is the particle diameter, D > 1 is the dimension of space, q = (1− r)/2
is the inelasticity of collisions, and r is the coefficient of normal restitution (assumed constant
throughout this paper). In this case the GH equations, linearized around the HCS, provide
an accurate theory of the initial stage of the instability in terms of the (linear) hydrodynamic
modes of the system: the shear mode (spontaneous formation of vortices) and the entropy, or
clustering mode (formation of clusters) [3, 4, 7].

The further evolution of the instability is a hard problem. One difficulty here is technical, as
the growing nonlinear shear and clustering modes become strongly coupled. Another difficulty
is conceptual: GH breaks down in high-density regions. All previous attempts to develop a the-
ory beyond linearization of the GH equations attempted to circumvent these difficulties. Ben-
Naim et al. [9] considered point-like particles inelastically colliding on a line. This strictly one-
dimensional (1D) geometry makes a GH description problematic [8]. Still, Ben-Naim et al. ob-
served that, at long times, the 1D system is describable by the Burgers equation with vanishing
viscosity. Ernst et al. [10] considered a small two-dimensional (2D) system, where the entropy
mode is suppressed, and dealt with the unstable shear mode. Baldassarri et al. [11] also stud-
ied the instability of the velocity field in a homogeneous gas, by introducing a lattice model.

Focusing on the entropy, or clustering, mode, Efrati et al. [12] had the shear mode sup-
pressed, by working with a quasi -1D setting, see below. They solved numerically the low-
density GH equations and found that, as the unstable system cools down, the shear stress be-
comes negligibly small, and a flow by inertia sets in. Formally, this flow develops a finite-time
singularity: the velocity gradient and the gas density diverge at some location. Efrati et al.
argued that the flow by inertia is an important intermediate stage of the clustering instability.
However, they did not address still later stages of the instability, when finite-density effects
come into play. We report here the first MD simulations which probe the quasi-1D clustering
of a dilute inelastic gas. We find that the simulated low-density stage of the clustering instabil-
ity is in excellent agreement with the hydrodynamic predictions of ref. [12]. What happens at
later times? We observe that the attempted singularities are arrested only when hexagonally
packed clusters are formed. The still later dynamics are describable by the Burgers equation
with vanishing viscosity, in a striking analogy with the purely 1D result by Ben-Naim et al. [9].
Based on this observation, we predict the very-late-time coarsening dynamics of the system,
all the way to its simple final steady state.

Model system and clustering instability. – Consider an assembly of N identical hard disks
of mass m = 1, diameter σ = 1, and inelasticity 0 < q � 1 in a 2D box with dimensions
Lx and Ly (Lx � Ly). The initial number density of the gas n0 = N/(LxLy) is very small
compared to the hexagonal close-packing density nc = 2/(

√
3σ2) � 1.155. The initial particle

velocity distribution is Gaussian with temperature T0 = 1. The parameters are chosen so that
the low-density GH equations [5] are accurate until relatively late times, when the local value
of nσ2 is not a small parameter anymore. The boundary conditions are periodic at x = 0
and x = Lx and elastic (specular reflection) at y = 0 and y = Ly. Assuming a homogeneous
cooling, one arrives at Haff’s law [5] T (t) = T0(1 + t/t0)−2, where t0 = (2π1/2σn0qT

1/2
0 )−1

is the characteristic cooling time. The GH equations, linearized around the HCS, show that
the HCS is unstable if Lx and/or Ly are large enough [3, 4, 7]. The density perturbations
grow in time algebraically. The temperature and velocity perturbations decay, but the decay
rates are smaller than that described by Haff’s law. As a result, the flow tends to become
supersonic [7]. A strong quasi-1D instability requires two criteria: σn0Lxq1/2 � 2π1/2, and
σn0Lyq1/2 � π1/2; the latter one guarantees suppression of the shear and clustering modes
in the y-direction [3, 4, 7, 12].
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Fig. 1 – The local area fraction ν(x, t) = n(x, t)/nc at times 0 (a), 274 622 (b), 549 554 (c), 771 055 (d),
2.14972× 106 (e), and 2.53252× 106 (f).

Flow by inertia. – We performed extensive event-driven MD simulations in this regime of
parameters. We verified that no structure in the y-direction appears, as expected. Therefore,
our diagnostics focused on 1D coarse-grained fields: the density n(x, t), the mean velocity
v(x, t) = (vx, vy) and the x and y components of the velocity fluctuations: Tx(x, t) and
Ty(x, t). We report here a typical simulation with N = 12500, q = 0.04, Lx = 5 × 105 and
Ly = 25. The initial gas density is n0 = 10−3, while t0 � 7.05 × 104. Strong clustering
instability is clearly seen in fig. 1, which exhibits formation of multiple clusters, and fig. 2,
which shows an inflow of gas into the forming clusters. Meanwhile, the gas temperature
T = Tx + Ty (not shown) rapidly decays with time. Throughout the simulated dynamics, Tx
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Fig. 2 – The horizontal velocity profiles at times 0 (a), 274 622 (b), 771 055 (c), and 2.53252×106 (d).
The straight lines in (c) and (d) have a slope 1/(t + C), where C = 3.8× 105.
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Fig. 3 – Left: the energy balance of the system vs. time. Etot is the average kinetic energy of the
particles, ET is the average thermal energy, and Emac is the average energy of the macroscopic
motions. Haff’s law is indicated by H. Right: the horizontal velocity profiles in a region around the
leftmost peak. Shown are (a) vx vs. x and (b) vx vs. x − (t + C) vx(x, t) at times 294518, 410692,
549554, 636990, 658371, 680869 and 701507 with C = 3.8× 105.

and Ty remain close to each other, while their spatial inhomogeneity is small compared to the
strong inhomogeneity of vx and n.

The average particle energy vs. time, Etot(t), follows Haff’s law at early times, but devi-
ates from it at later times, when strong hydrodynamic motions develop, see fig. 3 (left). In
the hydrodynamic description Etot(t) = (n0Lx)−1

∫ Lx

0
(ET +Emac) dx, where ET = nT is the

thermal energy density, and Emac = nv2/2 ≡ n(v2
x + v2

y)/2 is the macroscopic kinetic energy
density. The role of each term is elucidated in fig. 3. Both ET (t), and Emac(t) initially decay;
ET (t) decays faster. At later times ET (t) and the y-component of Emac(t) continue to decay
rapidly, while the x-component of Emac(t) decays much slower. As a result, Etot(t) is domi-
nated by ET at early times and by the x-component of Emac(t) at later times. Remarkably,
ET (t) continues to follow Haff’s law quite closely until the latest simulated times.

Figure 4a shows the time history of a typical cluster (the leftmost density peak in fig. 1c-f).
The rapid density growth is saturated when nmax approaches nc. A snapshot of the den-
sity peak region (fig. 5) indeed shows almost perfect hexagonal packing. The rapid density
growth is shown in more detail in fig. 4b which depicts 1/nmax vs. time. The linear de-
pendence, observed at intermediate times, indicates an “attempted” finite-time singularity
nmax ∼ (const−t)−1. The same density singularity was observed in hydrodynamic simula-
tions [12]; it is caused by a flow by inertia which develops when the forces acting on a fluid
element vanish. The reason for it in the freely evolving inelastic gas is the continued rapid
cooling, which makes the pressure and viscous stresses negligible [12]. The flow-by-inertia
equations read

∂vx

∂t
+ vx

∂vx

∂x
= 0, (1a)

and

∂n

∂t
+

∂(nvx)
∂x

= 0. (1b)
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Fig. 4 – Evolution of the leftmost peak in fig. 1f. (a) shows νmax vs. time. (b) shows n−1
max vs. time

and a linear fit. The inset shows the x-coordinate of the peak vs. time.

These equations are soluble analytically in Lagrangian coordinates [13,14]:

vx(x, t) = v0(ξ), (2a)

n(x, t) =
n0(ξ)

1 + (t + C) v′
0(ξ)

, (2b)

where C is an arbitrary constant, v′
0(ξ) ≡ dv0(ξ)/dξ, while v0(ξ) and n0(ξ) are the vx and

n, respectively, at the “initial” moment of time t = −C. The relation between Eulerian
coordinate x and Lagrangian coordinate ξ is x = ξ+v0(ξ) (t+C). The finite-time singularities
of both the velocity gradient, and the density occur when the denominator in eq. (2b) vanishes
for the first time; it requires v′

0(ξ) < 0.
The results of our MD simulations quantitatively agree with the flow-by-inertia scenario.

Using in eq. (2b) the straight-line fit, shown in fig. 4b, we obtain C � 3.8×105 and |v0(ξ∗)| �
1.0× 10−6, where ξ∗ is the Lagrangian coordinate of the density peak. Now we verify eq. (2a)
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Fig. 5 – Left: a snapshot of the system in the region of the leftmost peak at time 771 055. Right: the
right tail of the density peak close to the time of attempted singularity. Shown is the log-log plot of
the density profile n of the leftmost density peak vs. x − xmax at time 732 951. The dashed line is a
power law 0.2× (x − xmax)

−2/3.
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by observing (see fig. 3 (right)) the collapse of vx(x, t) vs. ξ = x− (t+C) vx(x, t), at different
times, in the region of the leftmost density peak. The slope of the obtained straight line
yields an independent estimate of |v0(ξ∗)| which agrees within 3 percent with the value of
1.0 × 10−6 found earlier. Still another prediction deals with the shape of the density peak
close to the time of attempted singularity. The flow-by-inertia theory predicts a density profile
n ∼ |x − xmax|−2/3 [14]. The simulations confirm this prediction, see fig. 5 (right).

As we observed, the density growth in the clusters is suppressed only when the density
approaches nc. At a fixed temperature, the pressure of an assembly of nearly elastic hard
spheres diverges like (nc − n)−1 as n approaches nc. Is there a pressure “revival” at n → nc?
We used the empiric relation p = nT (nc + n)/(nc − n), which interpolates between the dilute
limit and the close-packing limit [15], to calculate the pressure field p(x, t). We found that,
though nmax approaches nc, p(x, t) continues to decay with time, apparently because of the
very rapid temperature decay. Therefore, the pressure revival mechanism can be ruled out.

The Burgers model. – As the system approaches close packing it gets jammed. Faster
particles cannot overrun slower ones, and the singular growth of the velocity gradient and
density is arrested. A natural continuum model for a jammed flow is the Burgers equation [13]

∂vx

∂t
+ vx

∂vx

∂x
= ν

∂2vx

∂x2
(3)

in the limit of vanishing viscosity ν → 0, together with the continuity equation (1b). We
shall call this model “the Burgers model”. Equation (3) is soluble exactly by the Hopf-Cole
transformation [16, 17]. The zero-viscosity limit of the solution, which is the subject of our
interest, has the following properties. The solution is identical to that predicted by the flow-
by-inertia model until the time moment when the flow by inertia would have developed a
singularity. The attempted singularity gives way, in the Burgers model, to a “shock”: a jump
in the velocity field which carries a density peak (cluster). In this coarse-grained description,
the close-packed clusters have zero sizes but finite masses. At long times, when the shocks
have “matured” [17], the quantitative predictions of the Burgers model are especially simple
and can be conveniently tested in our MD simulations. One prediction is that ∂vx/∂x is equal
to 1/(t+C) everywhere between the shocks, where C is the same constant (� 3.8×105 in the
reported simulation) as above. This prediction is tested in fig. 2c and d. While the agreement
in fig. 2c is only fair (as the shocks have not yet matured), it improves considerably in fig. 2d.
Another prediction that we verified (see the inset of fig. 4a) is that each shock moves with
a constant speed until it collides with another shock. Furthermore, a collision between two
shocks leads to their merger, without any thermalization of the system. Such a merger event
can be seen in the left part of figs. 1e and f. Finally, we verified that the zeros of vx, belonging
to the “ramps”, stay at rest as expected [17].

Late-time coarsening dynamics. – Event-driven MD simulations become very slow once
the hexagonal close packing in the clusters is achieved. Fortunately, the times reached in our
simulations were large enough to have verified the Burgers model as a proper late-time contin-
uum model of the quasi-1D clustering process. Therefore, we can give a detailed prediction of
the still later coarsening dynamics of the system, without a need to simulate it. If the number
of clusters is large, the coarsening dynamics, which proceed via cluster mergers, can be ad-
dressed statistically. At this level of description the problem coincides with that of the decaying
Burgers turbulence [16,17], or the ballistic agglomeration model [18]. For uncorrelated initial
conditions, the average cluster mass grows with time like t2/3, the average velocity decreases
like t−1/3, and the average distance between two neighboring clusters grows like t2/3 [18]. This
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yields a long-time asymptotic scaling law Etot � Evx
∼ t−2/3. At this stage, Etot is dominated

by the kinetic energy of the clusters. The energy decay stops when an ultimate steady state
of the system is reached: a single “super-cluster”, moving with a small constant speed (which
can be determined from the initial data, by employing the momentum conservation in the
x-direction and assuming that all N particles are absorbed by this super-cluster).

Summary and discussion. – Our MD simulations fully support the hydrodynamic flow-
by-inertia scenario [12]. The attempted singularities of this flow are suppressed when almost
perfect hexagonally packed clusters are formed. At still later times the dynamics are describ-
able by the Burgers equation with vanishing viscosity, in a striking analogy with the purely
1D results by Ben-Naim et al. [9]. Therefore, clustering instability in a quasi-1D setting is now
well understood. What about a fully multi-dimensional geometry? It has been conjectured
that, prior to the first attempted singularity, the system should be describable by a multi-
dimensional flow-by-inertia model [12]. One can expect that an interplay between vorticity,
produced during the early stage of the instability, and jamming provides a saturation mech-
anism for the multi-dimensional singularities. Unfortunately, the multi-dimensional Burgers
model [16, 17] assumes a potential velocity field and misses the important physics, caused by
the presence of vorticity. The formulation of a continuum model free of this flaw should be
the next step of theory.
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