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Abstract. – The detection of the interrelation between non-stationary time series is a key
problem unsolved in the analysis of practical data. Here we present a novel approach to detect
the phase locking of time series in non-stationary status, which does not need the reconstruction
of the attractor but gets information from the consistence of local rotation speeds. This method
can be conveniently used for practical situations, such as the epileptic seizure.

In the analysis of time series, an important task is to measure the relationship between
different time series. From this one can predict what will happen in a near future, such as in
epileptic seizure. It is found that, in the case of epileptic seizure, the EEG data from different
parts of the brain are synchronized if the status of the patient is in epileptic seizure [1–3].
Hence the detection of synchronization and how the system changes to synchronization are
very important in practice. A common feature in these systems is that the status of the
systems is non-stationary and their parameters, such as coupling, are changing with time. As
the equations of these practical systems are unknown and the relationship between two time
series is not fixed but changing with time, how to detect their relationship is an open question.

For a system of stationary status, one can use the attractor-reconstructing technique to
recover the topological structure of the underlying attractor as a time series containing all
the necessary information for reconstructing the attractor. By the time-delay technique [4]
one can first get the trajectory from a scalar time series and then calculate its transverse
Lyapunov exponents. The coupled systems are synchronized or generalized synchronization
if the largest transverse Lyapunov exponent is negative [5–7]. There are also other statistical
methods [8–12] to judge the synchrony.

For a system of non-stationary status [1–3], strictly speaking, one cannot reconstruct its at-
tractor as there is no stationary attractor. But if the system does not change very fast, one can
treat the local part of time series as an approximate stationary state and reconstruct its local
attractor, and then use the reconstructed trajectory to estimate the interdependence [13–15].
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However, when the underlying system is high-dimensional, the needed data for attractor re-
construction is very large. In this case, the reconstructing technique may not work when there
is lack of enough data of approximate stationary status.

Moreover, when the local part of time series cannot be treated as an approximate stationary
state because of the fast varying parameters, the above approaches cannot be used. Hence the
question we want to address in this work is, in general, how to detect the relationship between
two time series in the case of non-stationary status. Notice that one fundamental feature
of a dynamical system is the behavior of oscillation or rotation. The rotation reflects the
instantaneous angle velocity of the phase point moving along the trajectory in a 2-dimensional
projection. For an arbitrary time series x(t), one can get the corresponding y(t) by Hilbert
transform [16] and then define a local rotation speed w(t) from tan(φ) = y(t)/x(t). Generally
speaking, the local rotation speed will ignore the detailed information of x(t) but keep the most
basic information. We find that if two time series come from identical or non-identical systems,
the synchronization between them can be conveniently estimated by an approach based on
the consistence of local rotation speeds, which does not need to reconstruct the attractor.
In practical situations, the interesting time series are from the same kind of oscillators, such
as EEG data from neurons, so here we will only consider the cases of coupled identical and
non-identical oscillators.

A common feature in practical situations is that there is always noise in time series.
Hence we suppose that the time series considered in this paper come from the following
coupled systems:

dx1,2

dt
= F (p1,2,x1,2) + k(x2,1 − x1,2) + Dξ1,2(t), (1)

where x is in the phase space of dimension m, F is a function which may show chaos, p1,2 are
the mismatched parameters denoting the identical situation for p1 = p2 and non-identical sit-
uation for p1 �= p2, k is the coupling matrix, ξ1,2 are independent Gaussian white noises with
average zero and standard deviation unity, and D is the noise strength. Rosenblum et al. show
that for symmetrically coupled non-identical Rössler oscillators, with the increase of coupling,
the systems can go through phase synchronization (PS) to Lag synchronization (LS) and fi-
nally to complete synchronization (CS) [17]. More generally, the final state of the coupled
non-identical systems will be generalized synchronization (GS). Here CS means the two time
series are identical [18], PS means the phase difference of the coupled oscillators is bounded,
whereas their amplitudes remain chaotic and uncorrelated [19, 20], and GS means there is
a functional relation x2 = Φ(x1) [8–12]. PS is usually studied in the non-identical coupled
dynamical systems or in a single system with external force. Tass et al. have used the PS
approach to detect n : m phase locking [21] in MEG and EMG data. More generally, the
relation n : m will change during the different stages of the patient. The n : m locking can be
obtained by trial and error. This approach sometimes needs to try all the possible n : m, so
that it will not be confused with the case of no PS locking, which is time consuming. Notice
that n : m locking in fact describes the proportional relationship between the corresponding
phases. This proportional relationship reflects the consistence of local rotation speed. So we
can use the detection of the consistence of local rotation speed to replace the detection of n : m
locking. That is, we transform the n : m phase locking to a 1 : 1 consistence locking, which
makes the detection become much easier. In this novel approach, the local rotation speeds will
change from non-consistence to consistence during the process of approach to phase locking.

Suppose we take a time series x(t) from x1 in eq. (1), where t ∈ (0, T ). By Hilbert
transform one can get its imaginary part x̃(t) = π−1P.V.

∫ ∞
−∞

x(t′)
t−t′ dt′, where P.V. means that

the integral is taken in the sense of the Cauchy principal value, and hence obtain the phase
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Fig. 1 – The numbers of rotation from time series z1(t) and z2(t) in a fixed time interval τj = 104,
j = 1, 2, · · · with coupling strength k = 4.0 and noise strength D = 0.01, where n1 is from time series
z1, n2 from z2, (a) and (b) denote the case of coupled identical oscillators with σ1 = σ2 = 10.0, and
(c) and (d) the case of coupled non-identical oscillators with σ1 = 10.0 and σ2 = 11.0.

tan(φ1) = x̃(t)/x(t). The rotation velocity is w1(t) = dφ1/dt. Doing the same, one can
get w2(t) = dφ2/dt for time series y(t) from x2 in eq. (1). Dividing the whole evolution
time T into N segments, each segment has a time interval τ = T/N . In the interval τj ,
j = 1, 2, · · ·N , we have ∆φj

1 =
∫ jτ

(j−1)τ
w1(t)dt and ∆φj

2 =
∫ jτ

(j−1)τ
w2(t)dt. In phase locking,

their behaviors should be in-step. For describing this kind of in-step behavior, we introduce
δφj

1,2 = ∆φj
1,2−∆φj−1

1,2 . Phase locking means that δφj
1 and δφj

2 will be in-step. So a convenient
approach to measure the phase locking relationship between two time series is by the in-step
relation between δφj

1 and δφj
2. In the following we use an example to explain this in detail.

Consider two coupled Lorenz systems

ẋ1,2 = σ(y1,2 − x1,2) + k(x2,1 − x1,2) + Dξx
1,2(t),

ẏ1,2 = γx1,2 − y1,2 − x1,2z1,2 + Dξy
1,2(t),

ż1,2 = −bz1,2 + x1,2y1,2 + Dξz
1,2(t), (2)

where γ = 28.0, b = 8/3, ξx
1,2, ξy

1,2, and ξz
1,2 are independent Gaussian white noises with

average zero and standard deviation unity. We first consider the case of identical oscillators
with σ1 = σ2 = 10.0. Generally speaking, the behavior of a dynamical system is some kind of
oscillation. Suppose we take two time series z1(t) and z2(t). By the Hilbert transform we get
their instantaneous phase φ1,2 and rotation velocity w1,2(t). Then the corresponding circles
of rotation in a time interval τj is n1,2 = 1

2π

∫ tj+τj

tj
w1,2(t)dt, where tj is the initial point of

the interval τj . Figures 1(a) and (b) show the results for k = 4.0 and noise strength D = 0.01.
Similarly, we get the numbers of rotation for the case of non-identical oscillators with σ1 =
10.0, σ2 = 11.0, k = 4.0 and D = 0.01, see figs. 1(c) and (d).
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Fig. 2 – Identical case (a), (c) and (e) with parameters D = 0.01, τ = 103, N = 104, σ1 = σ2 = 10.0;
non-identical case (b), (d) and (f) with parameters D = 0.01, τ = 103, N = 104, σ1 = 10.0 and
σ2 = 11.0. In (e) and (f), circles denote 〈w1〉 and stars 〈w2〉.

Comparing fig. 1(a) with (b) and (c) with (d), respectively, it is easy to find that, with the
increase of the time interval j, the changing tendency of n1 is in-step with that of n2. That
is, in most of time, both n1 and n2 increase or decrease at the same time. Therefore, we can
introduce an in-step parameter β to measure the degree of consistence between n1 and n2.
Similar to the phase definition of a discrete system [22], we think that if both n1 and n2

increase or decrease at the same time, this has positive contribution to β; otherwise, this has
negative contribution to β if n1 increases and n2 decreases or n1 decreases and n2 increases.
This requirement does not concern the detailed information of numbers of rotation of n1 and
n2, such as how large are n1 and n2, but only concern the changing tendency of n1 and n2

which is a coarse-graining of n1 and n2. Hence we come to the frame of symbolic dynamics [11].
Let us introduce a variable S1(τj), and let S1(τj) = 1 if n1(τj) > n1(τj−1) and −1 otherwise.
Similarly, we can define S2(τj) for n2(τj). Then the degree of consistence between n1 and n2

becomes the correlation between S1(τj) and S2(τj). Based on this analysis we have

β ≡ 〈S1(τj)S2(τj)〉, (3)

where the angular bracket denotes an average over τj . β will be zero for non-step n1 and
n2 and close to unity after GS or CS. Hence β is the quantity that describes the consistence
between local rotation speeds of two time series [23]. Equation (3) can be also understood
as follows: From the definition of n1,2(τj) we know that they are nothing but instantaneous
frequencies w1,2(τj). Hence, their symbolic dynamics is just a mapping of instantaneous an-
gular accelerations: Si = 1 if dwi/dt > 0 and Si = −1 if dwi/dt < 0. In this respect their
quantity is almost equivalent to the cross-correlation of angular accelerations. Calculating β
for different couplings k, we can observe how β changes with couplings. Figures 2(a) and (b)
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show the results for the identical and non-identical oscillators, respectively. It is easy to find
that, after k ≈ 4.0, the value of β approaches unity. So the synchronization point is approx-
imately kc ≈ 4.0. For several practical purposes, especially in neuroscience, it is important
whether de-synchronization can be detected too. Our numerical simulation confirms that the
β curves in figs. 2(a) and (b) are kept the same when we decrease k from 6 to 0, indicating
this approach can be also used to detect de-synchronization.

In the symmetrically coupled non-identical Lorenz systems, it is found that the PS point
is very close to the GS point [24]. For confirming it, let us calculate the largest transverse
Lyapunov exponent λT from the model equations. Figures 2(c) and (d) show how λT changes
with the coupling strength k for the identical and non-identical situations, respectively. As we
know, the GS point is the zero-crossing point of λT [5–7]. Comparing fig. 2(a) with (c) and
(b) with (d), respectively, one can see that the zero-crossing points in λT are approximately
the transition points in β, see the dashed-lined arrows. Furthermore, figs. 2(e) and (f) show
the relation between the average rotation speed 〈w1,2〉 and the coupling k, where 〈w1〉 is from
z1 and 〈w2〉 from z2. Obviously, 〈w1,2〉 changes with k before kc and then keeps constant after
kc. From fig. 2(e) one can see that 〈w1〉 and 〈w2〉 overlap for the whole k. And from fig. 2(f)
one can see that the difference between 〈w1〉 and 〈w2〉 gradually decreases to zero when the
coupled systems approach GS, indicating the PS transition is shadowed by the transverse
Lyapunov exponent crossing zero.

Another point we want to mention here is the different changing tendency in β and λT .
Obviously, λT in figs. 2(c) and (d) monotonously decreases while β in figs. 2(a) and (b)
monotonously increases only after k ≈ 2.0. The bell-shape of β before k ≈ 2.0 comes from
the fact that one of the two zero Lyapunov exponents of no coupling will become positive
first and then become negative [25], which is consistent with the change of w1,2 in figs. 2(e)
and (f). That is, λT is only used to judge the synchronization. For describing a system, one
has to consider the whole spectrum of Lyapunov exponents.

For a practical time series, the coupling may change during the evolution process. So the
whole time series is not for a fixed coupling strength, such as in the EEG data. In this case, we
need to use the sliding-window technique with the shorter length of time interval. Suppose we
have two time series with the same length T , which are used to calculate each β in figs. 2(a)
and (b). That is T = Nτ . Considering the parameter is varying during the evolution time T ,
now we divide the time series into m1m2 segments, where m1 and m2 are positive integers.
And then we calculate the β for each segment which is much shorter than T . For making sure
we have enough S1,2(τj) in each segment, we use τs = τ/m1 as the new time interval and
Ns = N/m2 as the new average number. Usually, Ns should be around 100 and τs should
contain at least 10 cycles. Hence eq. (3) becomes

βs =
1

Ns

Ns∑

j=1

S1(τs
j )S2(τs

j ), (4)

which shows that one β in (3) becomes m1m2βs in (4). That is how βs reflects the local
consistence of time series.

For checking eq. (4) by numerical simulation, let us assume that the coupling strength, k,
increases uniformly from zero to 6.0 during the evolution process. Hence, later data in the
time series has larger coupling strength. Figure 3(a) shows how the coupling strength k of the
time series changes with time. Calculating βs with m1 = 10 and m2 = 100 for each segment
Nsτ

s, we get the results as shown in figs. 3(b) and (c) for the identical and non-identical cases,
respectively. Considering the fact that, in a practical situation, the coupling parameter k may
sometimes change very fast, we increase the varying speed of k to 10 times that in fig. 3(a) and
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Fig. 3 – Case of varying coupling with D = 0.01, m1 = 10, m2 = 100, and Ns = τs = 100, where (a)
denotes how the coupling strength k changes with time. (b) Identical case with σ1 = σ2 = 10.0. (c)
Non-identical case with σ1 = 10.0 and σ2 = 11.0. And (d), (e), and (f) denote the results correspond-
ing to (a), (b), and (c), respectively, when the varying speed of k is 10 times faster than that in (a).

recalculate the corresponding βs. We find that the evolution of βs is similar to the cases in
figs. 3(b) and (c), indicating our approach also works for the situation of fast varying parame-
ters. Figures 3(d), (e), and (f) show the corresponding results. These results show that βs will
change with time for the case of varying coupling and monotonously increase when the cou-
pling strength k of time series is approaching kc. It may be useful in the prediction of epileptic
seizure. Imagine βs is over 0.5 in some time and still keeps rising, it is most possible that there
is a seizure coming. Comparing figs. 3(b) and (c) with figs. 2(a) and (b), one can see that
they are very similar except the fluctuations in βs. So βs can reflect the change of coupling.

We have observed similar behaviors from different variables, such as x from the first system
and z from the second system, and also in other systems, such as coupled Rössler oscillators.
We believe our approach works for the cases of general time series, especially for the cases
of non-stationary status. As we know, most of the techniques for analyzing time series as-
sume, in their application, that the dynamical parameters are unchanged. For the case with
non-stationary parameters, the interpretation of the results of this analysis is problematic.
So our method presents a way to go a further step toward the insight of understanding the
non-stationary time series.

An advantage of our method is the effectiveness and convenience. As we know, the time-
delay technique needs to get embedding dimension and delay-time first, which makes the result



206 EUROPHYSICS LETTERS

partially depend on the chosen delay-time and embedding dimension, and hence have some
uncertainty. Our method gets information directly from the rotation of time series. Comparing
the method with time-delay technique, our approach is much easier, faster, and less uncertain.

In conclusions, we have given a convenient method to estimate the phase locking rela-
tionship between two measured time series. This method is based on the consistence of local
rotation speeds and can be used for the case of non-stationary status.
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