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Abstract. – A novel non-perturbative method of solving scattering problems for bound pairs
on a lattice is developed. Two different break-ups of the Hamiltonian are employed to calculate
the full Green operator and the wave function of the scattered pair. The calculation converges
exponentially in the number of basis states used to represent the non-translation–invariant part
of the Green operator. The method is general and applicable to a variety of scattering and
tunneling problems. As the first application, the problem of pair tunneling through a weak link
on a one-dimensional lattice is solved. It is found that at the momentum values close to ±π the
pair tunnels much easier than one particle, with the transmission coefficient approaching unity.
This anomalously high transmission is a consequence of the existence of a two-body resonant
state localized at the weak link.

Introduction. – The scattering of bound particle complexes has been a major subject of
atomic, molecular and nuclear physics for decades. In “lattice” solid-state physics the prime
system of interest has been the exciton [1, 2], in which the constituent particles, an electron
and a hole, have different masses. The bound pair of two magnons in lattice magnetism is
an example of a complex with equal masses [3]. In recent years, the concepts of bisolitons
in one-dimensional non-linear systems [4], and bipolarons in conducting polymers [5, 6] and
high-temperature superconductors [7, 8] have been developed.

Many properties of these particles derive directly from their composite nature rather than
from the particulars of the binding interaction. They can therefore be studied within the
framework of the “generic” two-body system, in which a model potential is introduced to
ensure binding, yet the simplicity of the potential enables a rigorous analysis of the quantum-
mechanical problem. This approach has been popular and the physics of two-particle bound
complexes in translation invariant lattices is now well understood, see for example [9–11] and
the bibliography therein. Much less is known about non-translation–invariant cases. When
defects or boundaries are present the two-body problem can no longer be reduced to a one-
body problem, which significantly complicates analysis. In continuum physics, scattering of
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bound pairs was approached from the general three-body formalism [12–14], although no exact
results were obtained beyond the one dimension with delta-function potentials. On a lattice,
the previous research was limited to the surface excitonic effects [15, 16]. Bulatov [17, 18]
developed a general theory and an efficient numerical procedure to obtain the energy spectra
and wave functions of lattice excitons in the presence of a surface.

In this letter, we extend the method of [17,18] to the general scattering problem of lattice
bound pairs. The method consists of calculating the full two-particle Green operator G and
then acting with it on the wave function of an incident pair ΨV . The core feature of the
method is the usage of two different decompositions of the Hamiltonian on a zero part and a
perturbation. The first decomposition is applied to find G while the second decomposition is
used to calculate the scattering amplitudes. The accuracy of the method scales exponentially
with the number of lattice sites used to approximate the non-translation–invariant part of G.
As the first application of the method we solve the problem of tunneling of a one-dimensional
bound pair through a weak link on a chain. We find that the pair transmission at large lattice
momenta is significantly enhanced in comparison with the transmission of a single particle.
In fact, the transmission coefficient approaches unity at the Brillouin zone boundary.

Method. – The generic model consists of free motion of two particles H0, interparticle
interaction V (which is usually attractive), and single-particle scattering U :

H = H0 + V + U (1)
= HV + U (2)
= HU + V. (3)

Here we introduce two partial Hamiltonians, HV = H0 +V and HU = H0 +U . Equations (2)
and (3) define the two decompositions mentioned above. Using (2), the full wave function Ψ
satisfies the Schrödinger equation:

Ψ = ΨV +GV UΨ, (4)

where HV ΨV = EΨV , ΨV has the appropriate boundary conditions at infinity, GV (E) =
(E − HV + iγ)−1 is the Green operator of HV , and γ → 0. Three other Green operators
G, G0, and GU are defined analogously. In the basis of localized lattice states the Green
operators can be represented as ordinary matrices, albeit of infinite size.

Ordinarily, equations like (4) are used to develop perturbative expansions for Ψ from the
knowledge of the partial Green operator GV . Now suppose that the full Green operator G
is known. Since G = (1 − GV U)−1GV and Ψ = (1 − GV U)−1ΨV , the last term in (4) is
re-arranged as follows:

GV UΨ = GV U(1−GV U)−1ΨV = (1−GV U)−1GV UΨV = GUΨV , (5)

so that, from eq. (4),
Ψ = ΨV +GUΨV = (1 +GU)ΨV . (6)

Thus if G is known, the full wave function can be found from the last equation by matrix
multiplication.

Now comes an important observation. Since G is the full Green operator it does not matter
how it is obtained. In particular, one is not obligated to use the same decomposition (2)
that has led to eq. (6). For the scattering of bound pairs it is more convenient to use the
decomposition (3), which yields

G = (1−GUV )−1GU ≡ A−1GU . (7)
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The advantage of this approach is that GU is the Green operator of two non-interacting
particles, both scattered off the potential U . Therefore GU can be calculated as a convolution
of two one-particle Green operators gU :

GU (r1r
′
1; r2r

′
2;E) = i

∫ ∞

−∞

dε
2π

gU (r1r
′
1; ε)gU (r2r

′
2;E − ε). (8)

In turn, gU follows from the solution of a one-particle scattering problem:

gU = (1− g0U)−1g0 , (9)

where g0 = (ε − H0 + iγ)−1 is the one-particle Green operator of the translation-invariant
system. The zero operator g0 is most easily calculated from the spectral expansion

g0(r, r′; ε) =
∑

k

eik(r−r′)

ε− εk + iγ
, (10)

where εk is the one-particle spectrum. GU can also be calculated from the two-particle spectral
expansion [19]. Thus the strategy of the present method is to use the decomposition (3) and
the formulas (7)-(10) to obtain the Green operator G, and then use the decomposition (2) and
the formula (6) to calculate the full wave function Ψ and the scattering coefficients of interest.

Calculation of (1−GUV )−1. – Once GU is known, the main task is to invert the matrix
A ≡ 1 − GUV , see eq. (7). The way of calculating A−1 is the second key component of the
present method. Observe that inverting (1 − GUV ) is analogous to inverting (E − H), i.e.,
to calculating the Green operator. Imagine a GU that consists of a translation-invariant part
G0

U and a perturbation δG = GU −G0
U which is localized in real space. Then the translation-

invariant part (1−G0
UV ) plays the role of the translation-invariant part of (E−H) while δGV

the role of the localized perturbation. Performing the standard transformation one obtains

A−1 = (1−G0
UV − δG V )−1 = (1−B−1δG V )−1 B−1, (11)

B ≡ 1−G0
UV. (12)

Thus, inversion of A is replaced with two inversions. The first inversion is that of B. Since
B involves only translation-invariant matrices, this is achieved by changing to the quasi-
momentum representation in which B is block-diagonal with the block size equal to the range
of V in relative coordinates [18]. The second inversion is that of (1− B−1δG V ). The latter
is the sum of the unit matrix and a matrix localized around the scattering region, which is
due to the localization of δG. Therefore, only inversion of a finite-size matrix that contains
the non-zero elements of B−1δG V is required. As a result, the abstract task of inverting the
infinite matrix A is replaced with two easy-to-perform operations on finite-size matrices.

To summarize, the algorithm begins with the calculation of the Green matrix GU from
eqs. (8)-(10). Then GU is separated into the translation-invariant part G0

U and the remainder
δG. On the next step, A−1 is calculated according to eq. (11), and then the full Green operator
is obtained from eq. (7). Finally, a free pair wave function ΨV is chosen and the scattered
wave function is calculated from eq. (6). This formulation is non-perturbative and applicable
to a variety of particular cases. One such problem is analyzed below.

Chain with a weak link. – Consider a one-dimensional chain characterized by the nearest-
neighbor hopping matrix element t > 0 and the Hubbard-like attraction of strength |v| > 0.
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Fig. 1 – Bold lines: modulus of the single-particle transmission coefficient |τk| through the weak link,
see eq. (14). From the top curve down: t′/t = 0.1, 0.2, . . ., 0.9. Thin lines: the same quantity in the
presence of a resonant state at the top of the single-particle band, see eq. (18).

The hopping amplitude between sites n = 0 and n = 1 contains an additional element t′. The
resulting Hamiltonian reads

H = −t
∑

〈nn′〉σ
c†nσcn′σ − |v|

∑
n

c†n↑cn↑c
†
n↓cn↓ + t′

∑
σ

(
c†0σc1σ + c†1σc0σ

)
, (13)

where 〈nn′〉 denotes pairs of nearest-neighbor sites. The value t′ = 0 corresponds to the
absence of any scattering, while t′ = t corresponds to two decoupled semi-infinite chains. A
standard solution of the one-particle scattering problem yields the transmission coefficient:

τk =
(t′/t− 1)(eik − e−ik)
e−ik − (t′/t− 1)2 eik

, (14)

where k is the one-particle momentum. The modulus of the transmission coefficient |τk| is
shown in fig. 1 in bold lines. Note that τk = 0 at k = 0 or k = π.

In the absence of scattering (t′ = 0), two particles form a singlet bound state with an
(unnormalized) wave function,

Ψ±
V (n1, n2) = e±i K

2 (n1+n2)e−λ|n1−n2| , (15)

where K ≥ 0 is the total momentum of the pair and sinhλ = |v|/[4t cos (K/2)]. The energy
of the bound state is E = −√

v2 + 16t2 cos2(K/2) < 0. We choose to study the scattering
of the pairs incident from the left with energy E < −4t to prevent the processes of pair
breaking in two free particles. At these energies the full wave function (6) has the asymptotic
Ψ → Ψ+

V +RΨ−
V at n1, n2 → −∞, and Ψ → TΨ+

V at n1, n2 → +∞. We are interested in the
pair transmission coefficient T as a function of the pair momentum K and model parameters
t′ and |v|.

Determination of T begins with calculating GU from eqs. (8)-(10) using as input εk =
−2t cos k and U that has all the matrix elements zero except u01 = u10 = t′. The translation-
invariant part of GU can be obtained numerically by setting t′ = 0. Alternatively, the
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Fig. 2 – The non-translation–invariant part of the Green operator δG(n, n′) for |v| = 4.1 t and t′ =
0.3 t. The pair momentum is K = 0.3π (left panel) and K = 0.8π (right panel). The radius of the
circle represents the modulus |δG|. Notice the high degree of localization around the weak link.

two-particle spectral expansion yields for G0
U at E < −4t the following expression (for the

model (13), only n1 = n2, n′
1 = n′

2 matrix elements of G0
U are needed because of the locality

of the Hubbard attraction):

G0
U (n, n;n

′, n′;E) =
∫ π

−π

∫ π

−π

dk1dk2

(2π)2
cos k1(n− n′) cos k2(n− n′)

E + 2t cos k1 + 2t cos k2

= −
∫ π

−π

dq
2π

cos q(n− n′)√
E2 − 8t2 − 8t2 cos q

. (16)

In accordance with the general scheme, the matrix δG is calculated by subtracting G0
U from

GU . δG(n, n′) is very localized around the weak link n, n′ = 0, 1, see fig. 2.
The last thing we need is an expression for B−1, see eq. (12). Again, only the matrix

elements in the block n1 = n2 and n′
1 = n′

2 are required. By diagonalizing the block by a
Fourier transformation one can show that [17,19]

B−1(n;n′) =
∫ π

−π

dq
2π

cos q(n− n′)

1− |v|√
(E+iγ)2−16t2 cos2(q/2)

. (17)

Numerical results. – The results obtained in the preceding section enable the calculation
of the full two-particle Green operator, the exact pair wave function, and the scattering
coefficients of bound pairs for the model (13). In fig. 3 we show the modulus |ΨK | as a function
of the particle coordinates n1 and n2 for K = 0.3π, |v| = 4.1 t and t′ = 0.3 t. Notice how
reflection off the weak link creates interference between the incident and reflected waves. In
contrast, the transmitted wave (in the lower right part of the graph) has a constant amplitude.
In fig. 4 we show the pair transmission coefficient TK . As a function of pair momentum,
TK behaves qualitatively different from the one-particle transmission τk, see fig. 1. τk first
increases with the momentum but then decreases and vanishes at k = π. In contrast, TK is
a monotonically increasing function of the momentum, and reaches unity at K = π. Thus
at large lattice momenta a bound pair is transmitted through a weak link much easier than a
single particle. The likely physical reason for the anomalously high transmission is resonant
tunneling through a two-body state localized at the weak link. Bulatov and Danilov [20]
previously analyzed the two-particle spectrum of a semi-infinite Hubbard chain, i.e. model (13)
with t′ = t. They found that the chain boundary introduces a resonant state with E = −|v|,
i.e. exactly at the top edge of the pair band. We conjecture that such a state exists for t′ 
= t
as well, and facilitates efficient transmission through the weak link of pairs with energies close
to the top of the band, i.e. with momenta close to π.
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Fig. 3 – The pair wave function ΨK(n1, n2) for K = 0.3π, |v| = 4.1 t and t′ = 0.3 t. The radius of
the circle represents the modulus |Ψ|.

It is instructive to compare this effect with one-particle tunneling through the weak link
in the presence of a resonant state. Such a state appears in the model (13) with |v| = 0 if
an additional one-particle repulsive potential w is added at the two sites on either side of the
weak link. At w = t′, the state has the energy of the top of the one-particle band, E = 2t.
For those parameters, the transmission coefficient is [19]

τ̄k =
(1− t′/t)(eik − e−ik)

(eik − e−ik)− 2(t′/t)(1 + eik)
. (18)

This function is shown in fig. 1 in thin lines. The resonant state qualitatively changes the
transmission at large momenta. Instead of vanishing τ̄k approaches unity. The overall shape
of the curves is remarkably similar to the pair transmission curves of fig. 4, which further

Fig. 4 – Pair transmission coefficient TK for |v| = 4.1 and different t′/t. From the top curve down:
t′/t = 0.1, 0.2, . . ., 0.9.
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supports our interpretation of pair tunneling as through a resonant state.
Enhanced transmission of slow-moving weakly bound pairs in a continuum model with a

delta-function repulsive barrier was reported previously in [14]. We have not observed similar
enhancement in our model at moderate binding potentials. Analysis of the extreme weak-
coupling limit is not straightforward in our method because of the increasing extent of δG. In
addition, the two models are quite different. This makes the comparison of the two effects an
interesing but difficult task, which warrants a separate investigation.

Summary. – We have developed an efficient procedure of calculating scattering coeffi-
cients of bound pairs on a lattice. The key technical advance of the paper is the usage of
two different decompositions of the Hamiltonian; one is used to calculate the full Green op-
erator of the system while another to find the resulting wave function of the pair. Another
important element is the method of inverting the matrix (1 − GUV ), which is based on sep-
arating GU into a translation-invariant part and a part localized around the scatterer, see
eqs. (11) and (12). The numerical accuracy of the method scales exponentially in the number
of basis states chosen to represent the localized part. The method is non-perturbative and
general, enabling accurate investigation of a variety of scattering and tunneling problems. As
the first application, we have studied transmission of bound pairs through a weak link on
the one-dimensional chain. Contrary to simplistic expectations, we have found that at large
momenta the pairs penetrate the barrier more easily than single particles. The anomalously
high transmission has been identified with tunneling through a resonant pair state.
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