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PACS. 52.38.Fz – Laser-induced magnetic fields in plasmas.
PACS. 52.35.Mw – Nonlinear phenomena: waves, wave propagation, and other interactions

(including parametric effects, mode coupling, ponderomotive effects etc.).
PACS. 52.57.Kk – Fast ignition of compressed fusion fuels.

Abstract. – Using the ten-moment Grad system of hydrodynamic equations, a self-consistent
fluid model is presented for the generation of spontaneous magnetic fields in intense laser-plasma
interaction. The generalized vorticity is not conserved as opposed to previous studies, for the
nondiagonal stress force is considered. Equations for both the axial magnetic field Bz and the
azimuthal one Bθ are simultaneously derived from a fluid scheme for the first time in the quasi-
static approximation, where the low-frequency phase speed vp is much smaller than the electron
thermal speed vte. It is found that the condition vp � vte, widely used as cold-fluid approxi-
mation, where Bz is incomplete, is improper. The profiles of Bz and Bθ as well as the plasma
density cavitation are analyzed. Their dependences on the laser intensity are also discussed.

In the study of the interaction of an intense short-pulse laser with relativistic plasma [1],
the generation of spontaneous magnetic fields is most significant because these fields have
considerable influence on the whole nonlinear plasma dynamics. The study of this problem
has wide applications in the fast-ignition scheme [2] and particle acceleration. Although
much effort [3–7] has been done, there still exists a great deal of controversy concerning the
proper derivation for the spontaneous magnetic fields. It has been argued in refs. [8, 9] that
only a kinetic treatment can give the correct expression and that all fluid attempts yield
unsatisfactory results. So far, no fluid model can give complete spontaneous magnetic fields
including the axial component Bz and the azimuthal one Bθ, as in the kinetic theory [9–12].

We believe some facts should be noted during the self-consistent derivation of spontaneous
magnetic fields. 1) In intense laser-plasma interaction, there exist strong rotational motions
(currents) and large vortexes are generated, thus the fluid viscosity force (the nondiagonal
stress tensor) should be considered. Ideal-fluid assumption in most studies is improper. 2) In
this case, the generalized vorticity is not conserved as opposed to previous ideal-fluid mod-
els [5, 13]. 3) With intense laser, the plasma is warmed and the condition vp � vte (vp is
the low-frequency phase speed and vte the electron thermal speed) widely used as cold-fluid
approximation [5, 13] is improper. The condition vp � vte in the quasi-static approximation
should be satisfied.

In this paper, we consider an intense laser propagating in an initially uniform plasma.
Ion motion and the excitation of Langmuir waves are ignored. The electron motion can be
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well described by the ten-moment Grad system of hydrodynamic equations [14, 15], which is
a closed system of equations providing an approximate solution to the Boltzmann equation
and is composed of ten independent components of variables including density n, momentum
pi and stress tensor Πij . We give the system of equations as
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where the electric field E and magnetic field B are governed by Maxwell equations as
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∇ · E = 4π(n0 − n)e. (5)

Here −e, m, n and vte =
√
Te/m represent the charge, mass, density and thermal ve-

locity of electrons. n0 is the initial density. pi = γmvi is the electron momentum and
γi = (1+p2

i /m
2c2)1/2 is the relativistic factor. The stress tensor is written as Πij = 1

n0
mσij ,

where the diagonal components represent the normal pressure Pij = δijmn0Te and the non-
diagonal components represent the viscosity force. For the incompressible plasma electron
fluid, defining the stress force as Fi = ∂Πij

∂rj
, eq. (2) can be much simplified as ∂Fi

∂t =
1
γ v

2
t∇2pi − iv2

t

4ω0mγ2∇2∇× (pi × pi).
Now we divide both electron motion and fields into slow- and fast-time-scale parts as

p = 〈p〉+ 1
2 p̃e−iω0t + 1

2 p̃∗eiω0t, E = 〈E〉+ 1
2Ẽe−iω0t + 1

2Ẽ∗eiω0t and B = 〈B〉+ 1
2B̃e−iω0t +

1
2B̃∗eiω0t, where the angular bracket 〈 〉 denotes averaging over the fast time period (2π/ω0)
and ∗ denotes the complex conjugate for the fast-time-scale parts. Here and below, the
subscript i is and will be not written for simplification. Note that here 〈B〉 just represents
the spontaneous magnetic field, and Ẽ represents the laser electric field. Introducing the
generalized vorticity Ω ≡ ∇ × p − e

cB and splitting Ω similarly, the slow-time-scale parts of
eqs. (1), (2), (4) can be simplified as
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where 〈γ〉 = γ is assumed. Applying the curl operator on eq. (6) and using eq. (3), we get

∂〈Ω〉
∂t

=
1

4mγ
∇× 〈p̃ × Ω̃∗ + p̃∗ × Ω̃〉+∇× 〈F 〉. (9)

From eq. (9), we can see the generalized vorticity 〈Ω〉 is not conserved and is generated by the
nondiagonal stress force due to nonzero electron thermal motion in plasmas. From eqs. (6)-(9),
after some calculation, we obtain the equation for 〈p〉 in the lowest order as
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where ωpe =
√

4πn0e2/m is defined. Note eq. (10) includes the generalized vorticity 〈Ω〉.
Similarly, to the lowest order, for ω0 � vte∇, we get fast-time-scale quantities, respectively,

as p̃ = − ie
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te
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Making a second differential for eq. (10) related to t, getting ∂2〈Ω〉
∂t2 from eqs. (7), (9) and

then substituting ∂2〈Ω〉
∂t2 and eq. (11) into it, we obtain the coupling equation for 〈p〉 as
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From eq. (12), we can see that the relation between vte and the low-frequency phase speed
vp = ωs

q (ωs is the frequency, and q the wave number) is a key condition, for ∂
∂t = ωs and

vte∇ = vteq here.
In intense laser-plasma interaction, the plasma electron is warmed and vte cannot be

approximately regarded as zero anylonger. Thus, the previous widely used condition vp � vte

for the cold-fluid approximation [5, 13] is not satisfied anylonger. Note here that the low
frequency ωs is indeed a beat frequency of two high frequencies (ω1, ω2), as ωs = ω1 − ω2. In
the quasi-static approximation, it is reasonable to assume that ω2 is very close to ω1 and both
of them are close to ω0. Thus, ωs is much smaller than the characteristic oscillating frequency
of plasma electrons ωpe, which is determined by vte as ωpe = vte/λDe (λDe is the electron
Debye length) and has the same scale as ω0. When the spatial scale 1

q of the low-frequency
field is comparable to or smaller than λDe, the condition vp � vte is always satisfied. In
fact, the beat frequency ωs is approximately equivalent to the ion-acoustic frequency, i.e.,
ωs = qvs = q

√
Te

mi
(mi is the ion mass) and thus vp = vs � vte is always satisfied.

Under the condition vp � vte for quasi-static approximation, the right-hand side of eq. (12)
is dominant, the left-hand side can be ignored as zero, thus from eq. (12), we get
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Substituting eqs. (11), (13) into eq. (8), ignoring ∂〈E〉
∂t due to ∂

∂t � vte∇, we get 〈B〉 as
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Substituting eq. (13) into eq. (7) and making its divergence, we get ∂∇·F
∂t = 0, i.e., ∇ ·F = 0.

Thus, from eqs. (5), (6), we get the slow-time-scale plasma density 〈n〉
n0

as
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〈n〉
n0

= 1 +
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4m2ω2
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2
0γ

∇2〈Ẽ · Ẽ∗〉. (15)

Equation (14) combined with eq. (15) together gives the axial spontaneous magnetic fields and
their two driven sources. The first source is the rotational current as the result of the beating
interaction high-frequency electromagnetic waves (laser wave fields) 〈Ẽ×Ẽ∗〉, the second one is
the rotational current as the result of the coupling interaction between the high-frequency elec-
tron quiver velocity and the high-frequency electron density perturbation (see eq. (14)). Note
such two sources are unitedly and simultaneously given for the first time. In most of the previ-
ous fluid models [5,13], the viscosity force is not considered and the cold-fluid approximation
vp � vte is improperly used, which leads to the absence of the first source and the incomplete
axial magnetic field. From eqs. (13), (14), we can also prove that the generalized vorticity is not
conserved when the viscosity force is considered, as opposed to previous ideal-fluid models [5,

13]. The generated vorticity induced by high-frequency fields is ∇×〈Ω〉 = e2

4mω3
0γ
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pe
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n0γ + c.c.)− i∇2∇× 〈Ẽ × Ẽ∗〉]. Another fact that should be noted
is that the inverse Faraday effect is included in our model. Let us apply the curl operator on
eq. (6), noticing that Ω̃ = 0 and ∇× 〈p〉 = 〈Ω〉+ e

c 〈B〉 and considering eq. (9), we easily get
∂〈B〉

∂t = −c∇× 〈E〉, which is just the equation describing the inverse Faraday effect.
For simplicity, now we consider the interaction of an underdense plasma with an in-

tense laser. We assume that the laser beam propagates along the z-axis direction with
wave number k0 = 2π
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, under the Coulomb gauge, the electric fields are usually expressed

as EL(x, t) = 1
2E0(r, t)(er + iαeθ)eiαθeik0z−iω0t + c.c., where α = 0,±1 for linearly polar-

ized (LP) and circularly polarized (CP) laser, respectively. The laser intensity is assumed
to have Gaussian distribution I = I0e
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√
I, where L is the pulse

longitudinal width, and r0 the transverse radius. Thus the above high-frequency electric field
is expressed as Ẽ = E0(r, t)(er + iαeθ)eiαθeik0z and γ = (1+ P 2
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0
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]1/2 is obtained. Introducing the normalized transform
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e , using Bz to represent 〈Bz〉 and noticing that
∇ · Ẽ � 0 is satisfied for a laser beam propagating in an underdense plasma (see ref. [12]), we
get the normalized Bz from eqs. (14),(15),
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1
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where 〈n〉
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= 1− 1
n0r2

0

γ2 − 1
γ

(
2− r2

r2
0

γ2 + 1
γ2

)
. (17)

Equation (16) shows that Bz is only generated by CP laser (α=±1). For LP laser (α=0),
Bz is zero.

The transverse profile of |Bz| calculated by eqs. (16), (17) is plotted in fig. 1(a), where the
laser intensity is I0 = 1019 W/cm2 with wavelength λ = 1.05µm, the transverse focused radii
are, respectively, r0 = 1λ, 2λ, 3λ. The plasma density is n0 = 0.36ncr. The parameters are
consistent with those after focusing on the 3D particle simulation of ref. [12]. It can be seen
that Bz dominates the “inner” zone near the laser axis and the peak |Bz| is about 20–26MG
at the axis for r0 = 1–3λ. Either the profile or the peak value of |Bz| is very close to the
simulation results [12]. Recent experiment [16] reports that a Bz of about 2MG is generated by
CP laser with “vacuum” I0 = 6.7×1018 W/cm2 and “vacuum” r0 = 10λ (λ = 1.05µm), where
n0 = 2.8×1019 cm−3. Using equations (16), (17), |Bz| ∼ 1.93MG is estimated under the same
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Fig. 1 – The transverse profiles of (a) the axial magnetic field Bz and (b) the plasma density cavitation
〈n〉/n0 as a function of the radius r calculated by eqs. (16), (17), for a Gaussian laser beam with
intensity I0 = 1019 W/cm2, wavelength λ = 1.05µm, and transverse radii r0 = 1λ, 2λ, 3λ. The
plasma density is n0 = 0.36ncr.

parameters, where we assume I0 be two times the “vacuum” laser intensity and r0 decreased
down to 5λ, due to self-focusing. The result is also very close to that in experiment [16].

Figure 1(b) plots the transverse profile of plasma density 〈n〉/n0 by eq. (17) for the same
parameters as fig. 1(a). We can evidently see that electrons in the region r < r0 are expelled
by the ponderomotive force so that 〈n〉/n0 < 1, and the expelled electrons will be deposited
at a cavity edge with r � r0, where 〈n〉/n0 > 1; then when r � r0, 〈n〉/n0 = 1 is taken again.

The experimental results of [16] show that Bz increases with laser intensity I0. Figure 2
plots the dependences of |Bz| and 〈n〉

n0
on I0, where other parameters are consistent with those

in fig. 1. It can be seen that the peak |Bz| increases with I0, while the plasma density near
the axis ( 〈n〉n0

)r=0 decreases as I0 increases. When I0 rises high enough, the peak Bz does not
increase anymore. However, in a dense plasma, the fields can be quite strong for high-intensity
laser. Indeed, for I0 = 4 × 1020 W/cm2 (λ = 1.05µm), and n0 = 0.9 × 1021 cm−3, Bz turns
out to be 150MG.

The above analysis is only for the azimuthal momentum 〈Pθ〉, which generates Bz. For
the azimuthal magnetic field Bθ, the longitudinal momentum 〈pz〉 should be studied. For
the same Gaussian laser beam propagating in an underdense plasma as above, from eq. (12),
assuming ∂〈pr〉

∂z � ∂〈pz〉
∂r , we get the normalized coupling equation of 〈pz〉 as

∂2〈pz〉
∂ξ2

− ∂2〈pz〉
∂r2

− 1
r

∂〈pz〉
∂r

+ n0
〈n〉
n0γ

〈pz〉 = 1
4γ

∂2〈Ẽ · Ẽ∗〉
∂ξ2

=
∂2γ

∂ξ2
, (18)

where ξ = z − t is taken. Notice that Bθ is mainly produced by the longitudinal current,

Fig. 2 – The dependence of the peak Bz (a) and 〈n〉/n0 at the axis (r = 0) (b) on the laser intensity I0,
where the transverse radius r0 is taken equal to 1.5λ and the other parameters are consistent with fig. 1.
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Fig. 3 – The transverse profiles of the azimuthal magnetic field Bθ calculated by eq. (19) with the
same parameters as in fig. 1, except for r0 which is taken as 1λ, 1.5λ, and 2λ, respectively.

Fig. 4 – The dependence of the peak Bθ on the laser intensity I0, where the laser beam transverse
radius r0 is taken equal to 1.5λ and the other parameters are consistent with fig. 1.

which dominates near the axis. That is to say, Bθ is mainly decided by pz near the axis.
Thus, it is reasonable to ignore ∂〈pz〉

∂r and n0
〈n〉
n0γ 〈pz〉 in eq. (18) and then eq. (18) is simplified

as ∂2〈pz〉
∂ξ2 = ∂2γ

∂ξ2 . Assuming initially γ = 1 when 〈pz〉 = 0, then we obtain that 〈pz〉 = γ − 1.

Ignoring ∂〈E〉
∂t , using the symbol Bθ to represent 〈Bθ〉, from eq. (8), we get the normalized

Bθ as
1
r

∂

∂r
(rBθ) = −n0

〈n〉
n0

γ − 1
γ

. (19)

Equation (19) shows that both the CP laser (α = ±1) and LP laser (α = 0) can generate Bθ.
The transverse profile of |Bθ| by eq. (19) is plotted in fig. 3, where the parameters are

consistent with those of fig. 1, except for r0, which is taken as 1λ, 1.5λ, and 2λ, respectively.
It can be seen that Bθ dominates the “outer” zone away from the laser axis, is close to zero
near the axis, increases gradually with r until it reaches its peak value at about r = r0, then
decreases due to return currents. The peak Bθ at r = r0 is about 60–140MG for r0 = 1–2λ.
The results and the profile are both close to the particle simulation [12]. Experiment [17]
reports that Bθ ∼ 35–70MG is produced by LP laser with “vacuum” I0 = 4.7× 1018 W/cm2

and r0 = 4λ (λ = 1.05µm), where n0 = 2 × 1020 cm−3. We also assume that the focused I0
is two times its “vacuum” value as I0 = 9.4 × 1018 W/cm2 and the focused r0 = 1.5λ due
to self-focusing. Using eq. (19), the peak Bθ is estimated to be about 52MG, which agrees
well with the experimental result of [17]. Figure 4 plots the dependence of Bθ on the laser
intensity I0, where r0 = 1.5λ and the other parameters are the same as in fig. 1. It shows
that the peak |Bθ| also increases with laser intensity I0.

Recently, observations of nearly Giga-Gauss (GG) Bθ generated in ultra-intense laser over-
dense plasma interaction are reported by Tatarakis et al. [18] and Wagner et al. [19], which
can be explained by the scaling law of Sudan [3]. As mentioned in refs. [18, 19], the mini-
mum Bθ should be generated at the nonrelativistic critical density surface (n0 � ncr), the
higher Bθ should be generated in the higher density region (ncr < n0 < γncr) due to laser
hole-boring. For the same parameters as those of the experiments, i.e., I0 = 9× 1019 W/cm2

and λ = 1.05µm, assuming that the Gaussian distribution of laser intensity is still valid
for n0 < γncr = 6ncr, we can calculate Bθ by our model too. Using eq. (19), peaks
Bθ = 360MG, 466MG, 795MG (0.36GG, 0.47GG, 0.79GG) are estimated, respectively,
at densities n0 = 0.95ncr, 1.2ncr, 2.4ncr, which are close to the experimental results of [18,19].
Certainly, this is a rough estimate, for the laser hole-boring effect is a very complex topic.
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In conclusion, a self-consistent fluid model is presented for the spontaneous magnetic fields
including the axial part Bz and the azimuthal one Bθ generated by an intense CP and LP laser
propagating in an initially uniform plasma. The ten-moment Grad system of hydrodynamic
equations is used, where the nondiagonal stress tensor (the fluid viscosity force) is taken into
account, for there exist strong rotational motions (vortexes) in intense laser warm plasma
interaction. The generalized vorticity is proved to be not conserved, as opposed to previous
studies with ideal-fluid assumption. This hydrodynamic derivation yields exact and complete
expressions for both Bz and Bθ for the first time. In the quasi-static approximation vp � vte,
Bz is driven by two rotational currents generated only by CP laser, one is the result of the
beating interaction of the high-frequency electric fields of CP laser, and the other is the result
of the coupling interaction between the high-frequency electron quiver velocity and the high-
frequency electron density perturbation. These two sources are simultaneously given for the
first time. Bθ is driven by the irrotational current of ponderomotive force. It is shown that
the condition vp � vte, widely used as cold-fluid approximation in previous studies, where
the first source of Bz is not given and Bz is incomplete, is improper. The results calculated
by our model are compared with those of the particle simulation of ref. [12] and with the
experiments [16–19]. The transverse profiles of both Bz and Bθ as well as the plasma density
cavitation 〈n〉/n0 are analyzed. Their dependences on the laser intensity are also discussed.
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[8] Ŝkorić M. M., Laser Part. Beams, 5 (1987) 83.
[9] Berezhiani V. I., Tskhakaya D. D. and Auer G., J. Plasma Phys., 38 (1987) 139.
[10] Bezzerides B. et al., Phys. Rev. Lett., 38 (1977) 495; Mora P. and Pellat R., Phys. Fluids,

22 (1979) 2408; Kono M., et al., Phys. Lett. A, 77 (1980) 27.
[11] Zhu Shao-ping, He X. T. and Zheng C. Y., Phys. Plasmas, 8 (2001) 312.
[12] Qiao Bin, Zhu Shao-ping, Zheng C. Y. and He X. T., Phys. Plasmas, 12 (2005) 053104.
[13] Gorbunov L. M., Usp. Fiz. Nauk, 109 (631) 1973 (Sov. Phys. Usp., 16 (1973) 217);

TsintsadzeN. L. et al.,Zh. Eksp. Teor. Fiz., 72 (1977) 48016 (Sov. Phys. JETP, 45 (1977) 252).
[14] Grad H., Commun. Pure Appl. Math., 2 (1949) 331; Kirii A. Yu. et al., Zh. Tekh. Fiz., 39

(1969) 773 (Sov. Phys. Tech. Phys., 14 (1969) 583); Alexander N. Gorban et al., Phys. Rev.
E, 54 (1996) R3109.

[15] Aliev Yu. M., Frolov A. A. and Stenflo L. et al., Phys. Fluids B, 2 (1990) 34.
[16] Najmudin Z., Tatarakis M. et al., Phys. Rev. Lett., 87 (2001) 215004-1.
[17] Fuchs J., Malka G. et al., Phys. Rev. Lett., 80 (1998) 1658.
[18] Tatarakis M. et al., Nature, 415 (2002) 280; Phys. Plasmas, 9 (2002) 2244.
[19] U. Wagner, Phys. Rev. E, 70 (2004) 026401.


