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Abstract. – We investigate the Sp(N) mean-field theory for frustrated quantum magnets.
First, we establish some general properties of its solutions; in particular, for small spin we
propose simple rules for determining the saddle points of optimal energy. We then apply these
insights to the pyrochlore lattice. For spins on a single tetrahedron, we demonstrate a continu-
ous ground-state degeneracy for any value of the spin length. For the full pyrochlore lattice, this
degeneracy translates to a large number of near-degenerate potential saddle points. Remark-
ably, it is impossible to construct a saddle point with the full symmetry of the Hamiltonian —at
large N , the pyrochlore magnet cannot be a spin liquid. Nonetheless, for realistic finite values
of N , tunnelling between the nearly degenerate saddle points could restore the full symmetry
of the Hamiltonian.

Introduction. – The behavior of quantum magnets with strong frustration [1] is one of
the central open questions in the study of modern magnetism. The most celebrated members
of this class of problems are the nearest-neighbor Heisenberg antiferromagnets on the kagome
and pyrochlore lattices and the challenge is to work out their phases at varying values of the
spin S and temperature T . At large S, semiclassical computations become feasible if not
straightforward [2]. Small spins have typically been treated by entirely separate methods, and
for the case of the pyrochlore lattice these have involved starting from a symmetry-breaking
decomposition of the lattice [3].
As a complement to this work, we employ a large-N method that can be applied over

the full range of S and, particularly for the work described in this paper, allows us to keep
all symmetries in the formalism at small S. Specifically, we consider the enlargement of the
SU(2) ≡ Sp(1) symmetry group of the Heisenberg model to Sp(N). In the limit N → ∞, the
problem reduces to a mean-field theory for Schwinger bosons [4–6]. The mean-field theory
can be improved by evaluating 1/N corrections. This method has been applied to the kagome
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lattice [7] and found to predict a robust selection of a magnetically ordered state at large S
melting into a disordered spin-liquid state at small S.
We first establish some general properties of mean-field ground states of Sp(N) magnets

on regular lattices at small values of spin. The main variables of the mean-field theory are
complex numbers Qij defined on links (ij) of the lattice and representing probability ampli-
tudes of finding a valence-bond singlet. We derive a perturbative loop expansion, wherein spin
length is used as a small parameter. To the lowest nontrivial order, valence bonds are found
exclusively on links with largest exchange coupling. At higher orders, we find that a U(1)
flux, constructed from phases of the valence-bond amplitudes, tends to be expelled. These
observations systematize previous results obtained for several quantum antiferromagnets in
the large-N framework [7].
We then discuss the case of the pyrochlore antiferromagnet where we report three principal

results: i) For a single tetrahedron, the two-parameter degeneracy of classical spins persists
for any spin length despite the quantum effects encoded in the Sp(N) computation! ii) All
of these solutions break a symmetry —spatial or time reversal— and exhibit bond or chiral
order. iii) Embedding such states in the pyrochlore lattice results in a vast number of solutions
whose energies are very close to one another at small spin. This behavior is fundamentally
different from the triangular and kagome lattices, where the principle of flux expulsion alone
was sufficient to fix the ground states. The import of ii) and iii) is that, if the pyrochlore
lattice is indeed a spin liquid at N = 1, this will necessarily require tunnelling between saddle
points. Such a scenario is not at all unlikely.

Sp(N) Hamiltonian. – The Hamiltonian of an Sp(N) antiferromagnet may be written
as [7]

H = −(1/2N)
∑
〈ij〉

JijA†
ijAij , Aij = εαβbiαbjβ . (1)

The antisymmetric tensor εαβ is a block-diagonal 2N×2N matrix

ε =




iσy 0 . . .
0 iσy . . .
...

...


 (2)

and σy is the 2×2 Pauli matrix. Here, biα is the annihilation operator of a boson of species α
at site i. For N = 1, eq. (1) reduces to the SU(2) Heisenberg Hamiltonian written in terms of
Schwinger bosons, related to spin operators via Sa

i = b†iασ
a
αβbiβ/2 (a sum over doubly repeated

flavor indices is implied); the number of bosons determines the spin length: b†iαbiα = 2S. In
the large-N generalization, the spin length is related to the number of bosons per flavor [7]
κ ≡ b†iαbiα/N .

Mean-field approximation. – The Sp(N) mean-field equations [6], which become exact
for N → ∞, involve a decoupling of the quartic terms in eq. (1) with the aid of the link
variables 〈biαbjβ〉 = Qijεαβ/2:

HMF = (Jij/2)
∑
〈ij〉

(
N |Qij |2 −Qijεαβb

†
iαb

†
jβ −Q∗

ijεαβbiαbjβ

)
+

∑
i

λi(b
†
iαbiα − κN). (3)

The chemical potential λi keeps the average number of bosons fixed at κN on every site.
The mean-field equations are ∂〈HMF〉/∂λi = 0 (constraints on the boson numbers) and
∂〈HMF〉/∂Qij = 0 (minimization of energy).



280 EUROPHYSICS LETTERS

The mean-field Hamiltonian (3) is a sum of N identical copies, each containing two flavors
only (up and down in the Schwinger-boson language). The energy of each copy is O(1) in N .
Therefore, two different vacua will have an energy difference O(N), i.e., well separated in the
limit N → ∞ considered here. The low-lying excitations are S = 1/2 bosons (spinons) whose
energy is O(1).
For a total of N sites, this Hamiltonian can, for each pair of flavors, be written in terms

of N -component row vectors b†i↑ and bi↓, column vectors bi↑ and b†i↓, and N ×N matrices
Pij = JijQij/2 and Λij = λiδij . A Bogoliubov transformation diagonalizes the part quadratic
in bosons and yields a diagonal matrix of eigenfrequencies Ω for the bosonic spinons giving
the energy per flavor

〈HMF〉/N = Tr
[
PQ†/2− (κ+ 1)Λ + Ω]

. (4)

Uniform λ. – In the remainder of this paper we consider the mean-field theory with two
restrictions. Firstly, we have tacitly assumed the absence of a condensate of bosons, 〈biα〉 ≡ 0.
(This translates into the lack of magnetic order, 〈Si〉 = 0, for SU(2) spins.) This regime,
dominated by quantum fluctuations, always exists for small values of spin length κ [4, 7]. In
addition, we will only consider states with uniform chemical potential, so that Λ = λ1, where
1 is the N ×N unit matrix. This simplifies calculations as matrices Λ and P commute.
With the said restrictions, the boson spectrum Ωn can be obtained from the eigenvalues

ν2
n of the matrix PP †:

Ωn =
√

λ2 − ν2
n, det (PP † − ν2

n1) = 0. (5)

The expectation value of the Hamiltonian is then

〈HMF〉/N = Tr
[
PQ†/2 +

√
λ21 − PP † − λ(1 + κ)1

]
.

The boson-number constraint gives the condition

1 + κ = Tr
[
(1 − PP †/λ2)−1/2

]
/Tr1. (6)

A scaling transformation Qij → aQij , λ → aλ does not affect the constraint equation (6).
Minimization of the energy determines the optimal scale a and yields

〈H〉
N

= −
{
Tr

[(
PP †/λ2

) (
1 − PP †/λ2

)−1/2
]}2

2Tr (PQ†/λ2)
. (7)

Further minimization of the vacuum energy (7) is done by varying the relative strengths
and phases of the link variables Qij , subject to constraint (6). Our ad hoc assumption of a
uniform chemical potential restricts the choice of trial states in that all sites must be equivalent.

Loop expansion at small κ. – The structure of the mean-field equations (6) and (7)
suggests a solution by expansion in powers of PP †/λ2. Taking the trace makes it a loop
expansion: a generic term of the Taylor-expanded right-hand side of eq. (6) has the form

Tr
(
PP †)n

=
∑
a...z

Pab(−P ∗
bc) . . . Pyz(−P ∗

za) ≡ ΞeiΦ, (8)

where we have accounted for antisymmetry, Pcb = −Pbc. Expressions for κ and E = 〈H〉
involve sums over all possible closed loops abc . . . za of even length. The U(1) flux Φ defined
in eq. (8) will play an important role below [8].
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Convergence is particularly good when spinons have a short correlation length, as is the
case for small κ. In this limit, the physics is determined by the shortest loops. Formally, the
loop expansion is a series in powers of κ. In the following paragraphs, we develop the loop
expansion and demonstrate that it leads to simple organizing principles for the behavior of
Sp(N) antiferromagnets in the quantum limit of small κ. A variant of this strategy at high
temperatures has been described previously [9].

Shortest loops, greedy bosons. – The lowest order in PP †/λ2 yields the energy per site,
per flavor:

〈H〉
NN

= −κ
Tr

(
PP †)

Tr (PQ†)
= −κ

2

∑
〈ij〉 J

2
ij |Qij |2∑

〈ij〉 Jij |Qij |2 . (9)

To leading order (“loops” of length 2), the energy depends on the absolute values, but not the
phases of the link variables Qij . Minimization can be easily done if one interprets Jij |Qij |2 as
a probability distribution. The energy is then simply the expectation value of −κJij/2. An
optimal probability distribution then will have zero probabilities Jij |Qij |2 for all links except
those with the largest Jij . For example, on a square lattice with first- and second-neighbor
couplings J1, J2 > 0, the second-neighbor bonds will vanish, Q2 = 0, if J1 > J2; similarly,
Q1 = 0 if J1 < J2 in this approximation. Hence

Theorem (greedy bosons): in the limit of small κ, bosons form bonds Qij �= 0 on
the links with the largest Jij only.

For small but finite κ, there will be three phases: i) Q2 = 0 for J2/J1 below a critical
value (J2/J1)c1 < 1; ii) Q1 = 0 for J2/J1 above another critical value (J2/J1)c2 > 1; and
iii) coexisting Q1 �= 0 and Q2 �= 0 for intermediate values of J2/J1.

Longer loops, flux expulsion. – The terms of order (PP †)2 represent loops containing up
to 4 links. For a single (e.g., nearest-neighbor) nonzero exchange constant J , PQ† = 2PP †/J
and the energy, to this order, is

〈H〉
NN

= −κJ

2
− κ2J

4

Tr
[(
PP †)2

]
Tr 1

[Tr (PP †)]2
. (10)

For a fixed “norm” Tr(PP †) =
∑

〈ij〉 J
2
ij |Qij |2, lower energy means larger Tr(PP †PP †). This

can be achieved by tuning the phases of link fields Qij , as the contributions to Tr(PP †PP †)
from loop abcda and its reverse are PabP

∗
bcPcdP

∗
da + C.c. = 2Ξ cosΦ, cf. eq. (8). Clearly, for

fixed magnitudes |Pij |, the trace is maximized —and energy is minimized— when the flux Φ
vanishes.
This establishes the principle of flux expulsion for the shortest nontrivial loops (length 4).

As the loop expansion at small κ is organised by loop length, this principle provides the correct
ground state as the (ideally, only) one in which all loops up to a certain length contain no
flux. For example, it uniquely determines the Sp(N) ground states observed for the uniform
triangular and kagome antiferromagnets [7].
More generally, we can formulate a conjecture on the behavior of longer loops. It provides

all gauge-invariant information about the phases of link variables Qij .

Conjecture (flux expulsion): in the ground state, the flux Φ is zero through all
closed loops of even length, provided such a fluxless state is possible.
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Fig. 1 – The two-parameter family of ground states of a single tetrahedron. The four spins combine
to give zero total spin.

Keep in mind that the tendency to expel flux does not always guarantee the actual absence
of flux. If the lattice is not bipartite, fluxes may be frustrated and will not be expelled from
every loop. This happens already for the triangular and kagome cases and for the latter this
makes the selection more delicate than believed previously [10]. It happens with a vengeance
on the pyrochlore lattice.

Pyrochlore I: the single tetrahedron. – The shortest loop (of even length) on the py-
rochlore lattice contains four links and is confined to a single tetrahedron. There are, in fact,
three such loops on every tetrahedron and it can be verified that the sum of their fluxes equals
π (unless some link amplitudes vanish). The fluxes are thus frustrated and cannot be expelled
from all three loops. Unlike in all previously studied systems, the principle of flux expulsion
does not point to a unique ground state.
In fact, for the single tetrahedron, we find a two-parameter family of ground states, all

with exactly the same mean-field energy E/(JNN ) = −κ(κ+1)/2. These have link variables

Q12 = Q34 =
√

κ(κ+ 1) sin θ,

Q13 = Q24 =
√

κ(κ+ 1)(cosφ− i cos θ sinφ), (11)

Q14 = Q23 =
√

κ(κ+ 1)(cos θ cosφ− i sinφ).

This is quite remarkable as one of the charms of Sp(N) is its capacity to yield unique quantum
disordered states at small κ —indeed, this is the first counterexample! Remarkably, there is
a mapping between these ground states and those of classical Heisenberg spins on a tetra-
hedron, which can be constructed by a) parametrizing the ground states as shown in fig. 1,
b) representing the spins Si by two-component spinors ψiα and c) translating the spinors into
link variables Qij ∝ εαβψiαψjβ .

Possible orders. – All of these mean-field ground states violate a symmetry of the Hamil-
tonian (1): a point-group symmetry, time reversal, or both. These symmetry breakings are
best illustrated by the sets of states which break only a single symmetry.
First, breaking the symmetry group of the tetrahedron Td, are three bond-ordered states

with maximally inhomogeneous bond amplitudes, e.g. Q12 = Q34 = 0 and Q13 = Q24 =
Q14 = Q23 �= 0. These we call the “collinear” states, as their classical counterparts have
collinear spins (fig. 2(a)). The flux through loop 13241 vanishes; the other two fluxes are ill-
defined. The valence-bond order parameter characterizing the broken symmetry is described
in refs. [11] and [12].
Second, are states which leave the spatial symmetry intact but break the time-reversal

symmtery. These have θ = 1
2 arccos (−1/3), φ = ±π/4. They distribute the flux π equally
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(a) (b) (c)

Fig. 2 – Trial ground states of the single tetrahedron: (a) collinear, (b) coplanar, (c) anticollinear.

between the three loops, each receiving either +π/3 or −π/3. The classical analogs of the two
states have spins pointing at equal angles of arccos (−1/3) ≈ 109◦ to each other (fig. 2(c)).
The order parameter is spin chirality χ = 〈Sa · (Sb × Sc)〉, where abc is an oriented face of
the tetrahedron [12,13].

Pyrochlore II: the full lattice. – The pyrochlore lattice is a network of corner-sharing
tetrahedra. In the loop expansion up to O(κ2), the system behaves as if it were made up of
disjoint simplices: the energy is minimized as long as each tetrahedron is in any of its ground
states (11). This extremely large degeneracy will be lifted, at least partially, at O(κ3), which
includes loops enclosing the hexagons of the pyrochlore lattice. In the spirit of degenerate
perturbation theory, we must minimize the terms O(κ3) among all such possible states. This
is a problem of considerable complexity [14].
On a first approach we have minimized the energy over a restricted set of trial states in

which all tetrahedra are in the same state (11). Evaluation of the energy for a finite cluster
shows that, in accordance with our earlier conjecture, the energy reaches a minimum when
the hexagons enclose zero flux; this choice is similar to Sachdev’s Q1 = −Q2 state on the
kagome [7].
We obtain the following energies per site for the ground states derived from classical spin

states shown in fig. 2:

E

JNN = −κ

2
− κ2

2
−



0.18750κ3, fig. 2(a),
0.19922κ3, fig. 2(b),
0.20139κ3, fig. 2(c).

(12)

The energy is lowest in the state with equal link amplitudes that is related to the classical
state with equal angles between the spins (fig. 2(c)). We have evaluated the energy difference
between the states (a) and (c) analytically and found that (E(a)−E(c))/(JNN ) = κ3/72. Note
that the splitting is rather small: for the nominal equivalent of spin 1/2 (κ = 1), the energies
per spin differ by about one percent of the exchange constant. The order-from-disorder effect
is extremely weak.
Unfortunately, we have been unable to prove that the state described above is indeed the

state of lowest energy, for we have discovered another state with the same energy at O(κ3).
Without going into details, we note that the other state has a larger unit cell and contains
tetrahedra with “coplanar” spins (fig. 2(b)).

Outlook. – We have learned that finding the ground state of the Sp(N) pyrochlore
antiferromagnet is a hard problem. For all previously studied systems, our method yields
unique ground states in agreement with numerical minimizations at lowest non-trivial order
in κ. In contrast, simplices of the pyrochlore have continuously degenerate ground states.
Apart from flux expulsion, there is no simple principle that can guide the search for the
ground state in this case.
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At the same time, our study has produced some useful insights. First and foremost, we
find that there is no ground state retaining the full symmetry of the Hamiltonian; such a state
is already ruled out at the level of a single tetrahedron, in a controlled fashion at small κ. In
Sp(N), there is no spin liquid on the pyrochlore lattice at zero temperature. Furthermore, there
is a huge number of nearly degenerate saddle points, which are not related by a symmetry,
with a splitting O(κ3). These small splittings suggest that determining the precise nature of
the symmetry breaking is going to be very hard and, for experimental systems, exquisitely
sensitive to small additional terms in the Hamiltonian.
In the large-N treatment, tiny energy differences between saddle points are made infinite

as they come with a large prefactor N → ∞. In practice, N = 1, and therefore local tunneling
events will probably play a role. Whereas individual saddle points do break symmetries,
tunneling can lead to symmetry restoration. At the end of our investigation, we therefore
have to declare ourselves agnostic as to the eventual fate of the quantum pyrochlore magnet
at zero temperature. Whatever order may be present there will likely melt rapidly at finite
temperature.
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