

ERRATUM

Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices

To cite this article: K. N. Alekseev et al 2006 EPL 74 567

View the article online for updates and enhancements.

You may also like

- Fractional and unquantized dc voltage generation in THz-driven semiconductor superlattices
 K. N. Alekseev, E. H. Cannon, F. V.
- K. N. Alekseev, E. H. Cannon, F. V Kusmartsev et al.
- Rectification of terahertz radiation in semiconductor superlattices in the absence of domains
 J Isohätälä and K N Alekseev
- Feasible assessment of recovery and cardiovascular health: accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG Hannu Kinnunen, Aleksi Rantanen, Tuomas Kenttä et al.

EUROPHYSICS LETTERS 1 May 2006

Europhys. Lett., **74** (3), p. 567 (2006) DOI: 10.1209/epl/i2006-10025-9

Erratum

Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices

```
K. N. Alekseev^1, M. V. Gorkunov^{1,2}, N. V. Demarina^3, T. Hyart^1, N. V. Alexeeva^1 and A. V. Shorokhov^1
```

Department of Physical Sciences, University of Oulu

P.O. Box 3000, 90014 Oulu, Finland

Institute of Crystallography, Russian Academy of Sciences - Moscow 119333, Russia

³ Nizhny Novgorod State University - 603950 Nizhny Novgorod, Russia

(Europhys. Lett., **73** (6), pp. 934–940 (2006))

PACS. 73.21.Cd - Superlattices.

PACS. 72.20.Ht - High-field and nonlinear effects.

PACS. 07.57.Hm - Infrared, submillimeter wave, microwave, and radiowave sources.

Additional modelling of a high-frequency generation with consideration of a resonator tuned to $n\omega$ showed that the phase difference ϕ_n between the pump field (ω) and the signal field in resonator $(n\omega)$ can be either 0 for n=3, 7 or π for n=5, 9 within the quasistatic approximation. Condition $A_h > 0$ determines the phase shift $\phi_5 = \pi$ between the pump field (ω) and the signal field in resonator (5ω) , but it does not prevent a growth of this mode, in contrast to our previous statement. Therefore, the amplitude of field E_1 in an ideal resonator tuned to 5ω in fact can grow until it reaches a stationary value E_1^{st} corresponding to zero value of the total absorption $A(E_\omega, E_1^{st}) = 0$, which is now defined as $A = \langle I[E(t)]\cos(n\omega t + \phi_n)\rangle_t$ for the total field $E(t) = E_\omega\cos(\omega t) + E_1\cos(n\omega t + \phi_n)$. The maximal efficiency $\eta_0^2 = [E_1^{st}/E_\omega]^2$ is 10%. Next, following the necessary condition for suppression of domains (eq. (3)) the generation at 5ω is still possible in domainless mode.