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PACS. 78.20.Ci — Optical constants (including refractive index, complex dielectric constant,
absorption, reflection and transmission coefficients, emissivity).

PACS. 41.20.Jb — Electromagnetic wave propagation; radiowave propagation.

PACS. 42.25.Gy — Edge and boundary effects; reflection and refraction.

Abstract. — Based on boundary condition and dispersion relation, the superluminal group
velocity in an anisotropic metamaterial (AMM) is investigated. The superluminal propagation
is induced by the hyperbolic dispersion relation associated with the AMM. It is shown that a
modulated Gaussian beam exhibits a superluminal group velocity which depends on the choice
of incident angles and optical axis angles. The superluminal propagation does not violate the
theory of special relativity because the group velocity is the velocity of the peak of the localized
wave packet which does not carry information. It is proposed that a triglycine sulfate (TGS)
crystal can be designed and the superluminal group velocity can be measured experimentally.

Introduction. — In 1968, Veselago firstly introduced the concept of left-handed material
(LHM) in which both the permittivity ¢ and the permeability p are negative [1]. Veselago
predicted that LHM would have unique and potentially interesting properties, such as the
negative refraction index, the reversed Doppler shift and the backward Cerenkov radiation.
LHM did not receive much attention as it only existed in a conceptual form. After the first
experimental observation using a metamaterial composed of split ring resonators (SRR) [2,3],
the study of such materials has received increasing attention over the last few years [4-15]. As
noted earlier, both € and p are necessarily frequency dispersive in LHM. Since the frequency
dispersion is important, the superluminal propagation in the LHM takes place [6-8].

While negative refraction is most easily visualized in an isotropic metamaterial, negative
refraction can also be realized in anisotropic metamaterial (AMM), which does not necessarily
require that all tensor elements of € and p have negative values [9-13]. Recently, Smith et
al. have shown experimentally that an AMM slab designed to provide a permeability equal
to —1 along the optical axis, will redirect E-polarized electromagnetic waves from a nearby
source to a partial focus [14,15].
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In the present letter, we will investigate the superluminal group velocity of waves in an
AMM. The superluminal propagation is induced by the hyperbolic dispersion relations asso-
ciated with the AMM. We describe a modulated Gaussian beam incident on the triglycine
sulfate (TGS) crystal, which demonstrates in a straightforward manner that the peak of the
localized wave packet displays interesting superluminal behavior.

Hyperbolic dispersion relation. — For anisotropic media, one or both of the permittivity
and permeability are second-rank tensors. We assume that the permittivity and permeabil-
ity tensors are simultaneously diagonalizable. If we take the optical axis as the z-axis, the
permittivity and permeability tensors have the following forms:

e, 0 0 e 0 0
€= 0 & O , un= 0 py O , (1)
0 0 e, 0 (U

where ¢; and p; are the relative permittivity and permeability constants in the principal
coordinate system (i = z, y, z). It should be noted that the real AMM constructed by SRR
is highly dispersive, both in spatial sense and frequency sense [14,15]. So these relative values
are functions of the angle frequency w. A general study on the shape of the dispersion relation
as a function of the sign of these parameters has already been offered in ref. [12]. In this work,
we are interested in the case of AMM with hyperbolic dispersion relation.

Without loss of generality, we assume that the wave vector locates at the 2-z plane (k, =
¢y = 0). Maxwell’s equations yield a scalar wave equation for H-polarized field . In free space,
the accompanying dispersion relation has the familiar form

2
w
Ky +k ==, (2)

where k; and k, are the x and z components of the incident wave vector, w is the frequency,
and c is the speed of light in vacuum. We assume that there is an angle ¢ between the optical
axis and the z-axis. For the given polarization, the waves equation yield the dispersion relation

in AMM as )

w
g2 + B¢ + V4uq: = = (3)

where ¢, and ¢, represent the x and z components of refracted wave vector; «, 8 and ~ are
given by

1
o= — . (4 cos® p + £, sin? ),
z€z My
1
8 = — (e 5in% p + £, cos? ),
€2 MUy
1
V= oo m (e, 8in2¢p — g, sin 2¢). (4)
&z MUy

We show the dispersion geometry in fig. 1, where a plane electromagnetic wave is incident
from free space into the AMM. We choose the z-axis to be normal to the interface, the z-axis
in the plane of the figure, and the y-axis out of the plane of the figure.

We assume here that the electric field is polarized along the y-axis. The z-component of
the wave vector can be found by the solution of eq. (3), which yields

1

QZ:%

w2
Nﬁwc—g + (72 —4a0)q2 — Vs |; (5)
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Fig. 1 — The circle and the hyperbola represent the dispersion relations of free space and AMM,
respectively. The incident wave vector k is parallel to the group velocity v, in free space. Because of
the anisotropy, vy = Vqw(q) in the AMM is not necessarily parallel to the refracted wave vector gq.
Vqw(q) must lie normal to the frequency contour, w(q) = const.

the choice of sign of ¢, ensures that light power propagates away from the surface to the +z
direction. Due to the anisotropy, the transmitted wave components may refract at slightly
different angles. The values of refracted wave vector can be found by using the boundary
condition and hyperbolic dispersion relation.

We now determine the angle of phase refraction. The incident angle of light in free space
is 07 = tan~—'(k,/k.) and the refraction angle of the transmitted wave vector in AMM can
be found by 07 = tan"'(q,/q.). From the boundary condition at the interface z = 0, the
tangential components of the wave vectors must be continuous, ¢.e., ¢, = k. Thus the
refracted angle of wave vector in the AMM can be easily obtained.

It is well known that the group velocity in anisotropic media differs from the direction of
its wave vector. The group velocity is a very important physical quantity because it identifies
the speed of the maximum intensity of wave packet. The group velocity in anisotropic media
can be defined as [16,17]

Ow e+ ow
04y ¢ 0q:

where V4 denotes the gradient of w(q) in the wave vector space, e, and e, are unit Cartesian
vectors. Because of the anisotropy, v, =Vqw(q) is not necessarily parallel to the wave vector g.

The group velocity specifies the velocity of the peak of the wave group, and is not nec-
essarily parallel to the wave vector. When the interface is aligned with an angle with the
optical axes of the AMM, the hyperbolic dispersion relations will exhibit some interesting
effects. As shown in fig. 1, the magnitude of q varies as a function of its direction. When
the refractive wave vector g is approximately parallel to the asymptotic line of hyperbola
(dash-double-dotted line), g can be very large. The wavefront travels in the AMM with the
velocity of v, = w/q, so the ultra-slow phase velocity can be expected in the medium with

vy = Vaw(q) = e, (6)



1084 EUROPHYSICS LETTERS

5 [~ ~..
D o=1/6
4 | R [PUNPUI o=1/4
| \..\ e — - ¢:T[/3
'\
o 3f . Superluminal
~~ - \~.\<
o -
2k _._ AN
..... - .
F \,\_\.\. \\
1 - - T~ ~
o——r—————

9 60 -30 O 30 60 90
Incident angle 6, (degree)

Fig. 2 — The superluminal group velocity in an AMM with different optical axial angles of ¢ = 0
(solid), w/6 (dashed), /4 (dash-dotted) and /3 (dash-double-dotted). The parameters of AMM are
chosen as e, =1, e, = —5 and py = 1 (TGS crystal).

hyperbolic dispersion relation. The waves propagate in different directions or in the AMM,
Agqg may not be parallel to q. Therefore, the group velocity is generally not parallel to the
phase velocity. If g propagates in some special direction, Ag — 0 and the superluminal group
velocity can be deduced. It should be mentioned that the interesting properties never exist in
the medium with circle or ellipse dispersion relation.

Superluminal group propagation. — The negative refraction index imposes that the SRR
presents frequency dispersion [2,3]. This, in turn, conveys that actual anisotropic SRR is
highly lossy. So the superluminal group velocity is not easily experimentally verified in SRR
metamaterial. However, an extremely promising material, such as the TGS crystal, satisfies
the conditions ¢, > 0, e, < 0. In principle, at far infrared frequencies due to polarization
dependence of certain phonon resonances, the material with suitably low absorption exist [18,
19]. Thus the TGS slab can be prepared at low temperature and the superluminal group
velocity can be measured experimentally.

Based on the dispersion relation of eq. (3), the group velocity can be derived as

_ c(204s + 74z )es + (140 + 25¢: )e- o
! 2\/aqZ + 14:4- + B2 g

If the width of the distribution g(k) is small compared to the range of k over which kg varies
significantly, we can simply evaluate g(k) = q(ko) to obtain a good approximation. In fig. 2,
the group velocity in the AMM is plotted. It should be noted that the superluminal group
velocity in the AMM is induced by the hyperbolic dispersion relation. The superluminal
group velocity does not mean the propagation of energy will be superluminal. Using the new
definition of electric and magnetic energy [20,21], the energy velocity cannot be superluminal
and the conservation of energy is not violated.
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Fig. 3 — The modulated Gaussian beam incident from free space to AMM. The center wave number
is ko = v/b with different incident angles ; = —7/6. The optical axis angle ¢ = w/4 and the spatial
extent of the incident wave packet is @ = 1. The peak of the localized wave packet travels from point
1 to point 2 during a cycle At with superluminal group velocity. The anisotropic parameters are the
same as those used in fig. 2.

Note that a wave group can be formed from planes with different frequencies w or from
plane waves with different k vectors [17]. To obtain a better physical picture of superluminal
group velocity in AMM, a modulated Gaussian beam of finite width can be constructed.
The field intensity distribution in free space is obtained by the Fourier integral and angular
spectrum representation [22]. Following the method outlined by Lu et al. [23], let us consider
a modulated beam incident from free space:

+oo
Hy(z,z2) :/ dky f(k1)expli(ko + k1) - r —iwpt], (8)

— 00

where k| is perpendicular to kg and wy = ckg. A general incident wave vector is written as
k = ko + k.. We assume that its Gaussian weight is

flky) = ﬁ exp[—a’k.], 9)

where a is the spatial extent of the incident beam. We want the modulated Gaussian beam
to be aligned with the incident direction defined by the vector kg = kg cos e, + kosinfre.,
which makes an angle 6; with the surface normal.

Due to the anisotropy, the transmitted wave components may refract at slightly different
angles. When the beam enters the AMM, it will no longer maintain Gaussian, but becomes
a localized wave packet. Matching the boundary conditions for each k component at z = 0
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gives the complex field in the form

“+o0
Hy(r,2) = / Ak f (k)T (k) expli(g - 7 — wot). (10)

— 0o

where T'(k) is the transmission coefficient of the wave packet. The transmission coefficient can
obtain a good approximation to simply evaluate this quantity at ky. Then the transmission
coefficient of the wave packet is simply given by T'(ko). The normal component of refracted
wave vector ¢, can be expanded in a Taylor series to first order in kg to obtain a better
approximation,
0q.(k

QZ( ) ) (11)

ok |,

0

The distribution of the transmission field in the AMM can be derived from eq. (10) under the
above approximation.

A close look at the localized wave packet shows that the superluminal propagation of the
peak is induced by the hyperbolic dispersion relation in the AMM. Figure 3 shows a close
view of the field intensity distribution of the wave packet propagating from free space into
the AMM. In a circle At = 27 /wq of the modulated Gaussian beam, the peak of the localized
wave packet travels from point 1 to point 2. In fig. 3 we set the center wave vector with
incident angles §; = —7/6. We mark the peak of the wave packet at the two times. In the
At = 0.094 ns, the peak of the wave packet moves from (1.284, 2.571) to (3.144, 6.147). This
propagating velocity corresponds to 0.427 m/ns, which is almost exactly the analytical group
velocity of 1.424¢ in eq. (7), and the superluminal group velocity is demonstrated theoretically.

QZ(k) = QZ(kO) + (k - kO) '

Discussion and conclusion. — It should be noted that the superluminal group velocity
has completely different origin from those described in isotropic LHM [6-8] or ultracold gas of
atoms [24,25], where the superluminality is caused by the frequency dispersion of the medium.
In the case discussed here, the superluminal group velocity in the medium is induced by the
hyperbolic dispersion relation in the AMM. As far as we know, this kind of superluminal
group velocity has not been recognized before. It should be mentioned, however, that the
shape of localized wave packet is distorted once the modulated Gaussian beam is incident
into the AMM. Our results do not violate causality or special relativity, because the group
velocity is the velocity of the peak of the wave packet, which does not carry information. It
is shown that the TGS crystal slab can be designed and the superluminal group velocity can
be measured experimentally.
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