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Abstract. – We study heat conduction in one-dimensional (1D) anharmonic lattices ana-
lytically and numerically by using an effective phonon theory. It is found that every effective
phonon mode oscillates quasi-periodically. By weighting the power spectrum of the total heat
flux in the Debye formula, we obtain a unified formalism that can explain anomalous heat con-
duction in momentum conserved lattices without on-site potential and normal heat conduction
in lattices with on-site potential. Our results agree very well with numerical ones for existing
models such as the Fermi-Pasta-Ulam model, the Frenkel-Kontorova model and the φ4 model
etc.

Recent years has witnessed increasing studies on heat conduction in one-dimensional (1D)
anharmonic (nonlinear) lattices [1]. On the one hand, people would like to know whether
or not Fourier’s law of heat conduction for bulk material is still valid in 1D systems. This
is a fundamental question in non-equilibrium statistical mechanics. In fact, it is not trivial
at all as a rigorous proof is still not possible. On the other hand, the fast development of
nano technology makes it possible to fabricate 1D or quasi 1D systems such as nanowire
and/or nanotube etc and to measure its transport properties. To understand heat conduction
properties in such systems is of great interest in heat control and management at nanoscale.
Numerically, an anomalous heat conduction — heat conductivity diverges with system size—
has been observed in momentum conserved systems without on-site potential such as the
Fermi-Pasta-Ulam (FPU) lattice [2], and a normal heat conduction has been found in the
systems with on-site potential like the Frenkel-Kontorova model [3] and the φ4 model [4, 5].
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Unfortunately, up to now a general theory to predict the heat conduction behavior in a 1D
system is still lacking.

In this letter, we investigate analytically and numerically the physical mechanism leading
to the anomalous and the normal heat conduction in 1D anharmonic (nonlinear) lattices from
an effective phonon theory. The theory is based on the ergodic hypothesis (equipartition
theorem). As will be seen, our analytical result can explain the anomalous and normal heat
conduction observed numerically in different models.

We consider a 1D anharmonic (nonlinear) lattice with the Hamiltonian

H =
N∑

i=1

[
1
2
miẋ

2
i + V (δxi,i+1) + U(xi)

]
(1)

with periodic boundary condition x1 = xN+1. Here we chose mass mi = 1 for all lattices.
ẋi = dxi/dt. δxi,i+1 = xi − xi+1. Without loss of generality, we write the inter-particle
potential V (δxi,i+1) and the on-site potential U(xi) as

V (δxi,i+1) =
∞∑

s=2

gs
(δxi,i+1)s

s
, U(xi) =

∞∑
s=2

σs
xs

i

s
, (2)

respectively. The canonical transformation which diagonalizes the harmonic Hamiltonian is
X = BQ, where Xi = (xi or ẋi), Qk = (qk or pk), and Bik are [6]

Bik =




√
2
NGk cos

2iπ(k−1)
N , k = 1, ...,

[
N
2

]
+ 1,√

2
NGk sin

2iπ(N−k+1)
N , k =

[
N
2

]
+ 2, ..., N,

where
[

N
2

]
is the integer part of N

2 , and Gk = 1/
√
2 for k = 1 and k = N/2 + 1 if N is even,

otherwise Gk = 1. The spectrum of the harmonic lattice is ωk = 2 sin (k − 1)π/N .
Under the ergodic hypothesis, the system obeys the generalized equipartition theorem [7]

kBT =
〈
qk

∂H
∂qk

〉
, here 〈·〉 denotes the canonical ensemble average. The force in k space has

two parts

−Fk =
∂H

∂qk
=

N∑
i=1

∞∑
s=2

(
ωkgs(δxi,i+1)s−1γik + σsx

s−1
i Bik

)
,

where the new matrix γik is defined as in ref. [6], γik = 0 for k = 1 and γik = (1/ωk)(Bik −
Bi+1k) otherwise. γik satisfy

∑N
i=1 δxi,i+1γik = ωkqk,

∑N
k=2 γikωkqk = δxi,i+1. The general-

ized equipartition theorem becomes

kBT =
N∑

i=1

∞∑
s=2

(
ωkgs〈(δxi,i+1)s−1qk〉γik + σs〈xs−1

i qk〉Bik

)
,

≈
∞∑

s=2

[
gs

〈∑N
i=1(δxi,i+1)s〉

〈∑N
i=1(δxi,i+1)2〉

ω2
k + σs

〈∑N
i=1 x

s
i 〉

〈∑N
i=1 x

2
i 〉

]
〈q2

k〉,

≡ α(ω2
k + γ)〈q2

k〉, (3)

where

α =
∑∞

s=2 gs〈
∑N

i=1(δxi,i+1)s〉
〈∑N

i=1(δxi,i+1)2〉
,
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and

γ =
1
α

∑∞
s=2 σs〈

∑N
i=1 x

s
i 〉

〈∑N
i=1 x

2
i 〉

.

In analogy with a harmonic lattice where kBT = ω2
k〈q2

k〉, we define effective phonons in
1D anharmonic lattices. The frequencies of the effective phonon are

ω̂2
k = α(ω2

k + γ), (4)

here k is wave vector with replacement k → 2π(k−1)/N and ωk = 2 sin k
2 . The corresponding

velocities are

vk =
∂ω̂k

∂k
=

√
α ωk√
ω2

k + γ
cos

k

2
. (5)

It has been found [6, 8] numerically that the approximation in eq. (3) is feasible for an-
harmonic lattices without on-site potential such as the FPU-β model (U(x) = 0, V (x) =
x2/2 + βx4/4, we take β = 1 in this paper) and the H4 model (U(x) = 0, V (x) = x4/4); α is
found to be independent of mode k and lattice length.

In order to check if eq. (3) is suitable for the anharmonic chains with on-site potential,
we study numerically γ for the φ4 model (U(x) = x2/2, V (x) = x4/4) and the quartic φ4

model (U(x) = x4/4, V (x) = x4/4). We find that γ is independent of k and the chain length
provided the chain is long enough. For example, γ 	 1.065 for the φ4 model with chain length
N ≥ 64 at temperature T = 1. In fig. 1, we show 〈p2

k〉/(ω̂2
k〈q2

k〉) and dispersion relation ω̂k

for quartic φ4 (upper panel) and φ4 (lower panel) models. 〈p2
k〉/(ω̂2

k〈q2
k〉) is very close to one

for all k in both models. We also find that γ increases with temperature as γ ∼ T 0.61±0.01

(see, fig. 2). Therefore, we can conclude that the approximation is good for both anharmonic
chains with and without on-site potential under ergodic hypothesis.

It should be pointed out that the approximation in eq. (3) is a kind of mean-field approx-
imation. It is based on our numerical observation as a rigorous proof is not possible,. The
phonon-phonon interaction is implicitly contained in the two coefficients α and γ.

The heat conductivity can be derived from the Debye formula

κ =
∑

k

ckv
2
kτk,

where ck, vk, and τk are specific heat, phonon velocity and phonon relaxation time of mode
k, respectively. Generally, the contribution from phonons of different frequencies should in
principle be weighted but this is not reflected in the Debye formula. Since the heat conductivity
is a transport coefficient of heat energy which manifest itself by heat flux, this weight factor
must be the power spectrum of the total heat flux. Thus we rewrite the Debye formula for
1D anharmonic lattices as,

κ =
∑

k

Pkckv
2
kτk, 0 < k ≤ 2π,

in which Pk is the normalized power spectrum of the total heat flux. Moreover, the Debye
formula does not give an explicit expression of the phonon relaxation time τk. From our
numerical calculations, we find that each mode oscillates quasi-periodically for both lattices
with and without on-site potential (see fig. 3). It is therefore reasonable to assume that the
phonon relaxation time is proportional to the quasi-period of each mode, i.e., τk = λ 2π

ω̂k
, where

the prefactor λ is only temperature dependent and will be discussed in another paper.
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Fig. 1 Fig. 2

Fig. 1 – The energy ratio, 〈p2
k〉/ω̂2

k〈q2
k〉, and dispersion relation ω̂k vs. k for the φ4 model (lower panel)

and the quartic φ4 model (upper panel). N = 128 for the φ4 model, and N = 64 for the quartic φ4

model. Temperature is set to T = 1.

Fig. 2 – Parameter γ vs. temperature T for the φ4 model.

To deal with the size dependence of the heat conductivity, it is more convenient to consider
the mean-free-path rather than the relaxation time. The mean-free-path of the effective
phonons is defined by

lk = vkτk = 2πλ
ωk

ω2
k + γ

cos
k

2
. (6)

For systems without on-site potential where γ = 0, lk reduces to

lk =
2πλ
ωk

cos
k

2
.

In the long-wavelength limit, k → 0, the mean-free-path lk ∝ 1/k, becomes divergent. How-
ever, for systems with on-site potential where γ > 0, the mean-free-path of any effective
phonon is finite. This difference results in different heat conduction behaviors in systems
without on-site potential and systems with on-site potential.

The modified Debye formula of thermal conductivity can be expressed in a continuous
form in the thermodynamical limit:

κ =
N

2π

∫ 2π

0

P (k)ckvklkdk = cλ
√
α

∫ 2π

0

P (k)
ω2

k

(ω2
k + γ)3/2

cos2
k

2
dk, (7)
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where c =
∑

k ck. By definition, P (k)dk = P (ω)dω, and P (ω) is the Fourier transform of the
auto-correlation function of the total heat flux J(t).

Equation (7) is the main analytical result of this letter. Whether the heat conduction in
a 1D system is normal or anomalous depends on whether the integral of eq. (7) is finite or
infinite. For systems with on-site potential such as the FK model and the φ4 model where
γ > 0, all integrands except the normalized power spectrum P (k) are finite. Since P (k) should
be normalized over the phonon spectrum

∫ 2π

0
P (k)dk = 1, the integral of eq. (7) for systems

with on-site potential is always finite. Thus even without knowing exact knowledge of P (k),
we can predict that heat conduction of systems with on-site potential obeys Fourier’s Law.
However for systems without on-site potential, γ = 0 which implicitly means the momentum
conservation. The integral of eq. (7) reduces to

∫ 2π

0
P (k) cos2 k

2
ωk

dk. In the long-wavelength
limit, ωk ≈ k, the integral has a singularity at k → 0. This singularity originates from the
infinite mean-free-path of the effective phonon of the long-wavelength limit and is proportional
to 1/k. Since the effective phonon of the long-wavelength is the most dominant part for heat
transfer, the systems without on-site potential will exhibit an anomalous heat conduction. In
the following we shall apply the above theory to two typical classes of Hamiltonian systems,
the FPU model, a representative model without on-site potential, and the φ4 model, a rep-
resentative one with on-site potential. As shall be seen soon our theory gives predictions in
good agreement with numerical simulations.

Systems without on-site potential. – In the Hamiltonian (1), U(x) = 0 means momentum
conservation, and γ = 0 in eq. (3). Here we focus on the FPU-β model. The details of
renormalized frequencies of effective phonons will be discussed as well as the effective phonon
speed and the heat conductivity with respect to lattice length.

In the FPU-β model, V (x) = x2/2 + x4/4 and U(x) = 0. α is determined only by
temperature [6, 9]. In this model, α has a simple analytic expression

α = 1 +

〈∑N
i=1 (δxi,i+1)

4
〉

〈∑N
i=1 (δxi,i+1)

2
〉 = 1 +

∫ ∞
−∞ φ4e−V (φ)/Tdφ∫ ∞
−∞ φ2e−V (φ)/Tdφ

(8)

this equation is equivalent to the eq. (11) of ref. [9].
If the effective phonons of long wavelength are dominant in heat transfer, which is true for

a system of large size, the speed of the energy transport can be approximated by the speed
of the effective phonon with the longest wavelength

v =
√
α cos

π

N
. (9)

In fig. 4 we draw the above analytical v vs. temperature for two different system sizes and
compare them with the numerical ones from Aoki and Kuznezov [10]. The agreement be-
tween our analytical results (9) and the numerical ones is very good in a very wide range of
temperature (five orders of magnitudes.)

In the thermodynamic limit N → ∞, the size dependence of heat conductivity only de-
pends on the integral

κ ∝
∫ 2π

0

P (k)
cos2 k

2

ωk
dk. (10)

If the effective phonons of long wavelength dominate the heat transfer, and P (k) ∝ k−δ (δ > 0)
asymptotically in the long-wavelength limit, then, the heat conductivity is a system-size–
dependent quantity, κ ∝ k−δ ∝ N δ. The numerical calculation of the power spectrum of the
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Fig. 3 Fig. 4

Fig. 3 – Time behaviors of qk(t) of the H4 model and the quartic φ4 model. N = 64 and T = 1 for
both models. τk = 2π/ω̂k.

Fig. 4 – The effective phonon speed in the FPU-β model vs. temperature. The numerical results
come from the lower panel of fig. 3 in ref. [10]

total heat flux in the FPU-β model has shown that δ ≈ 0.37 ∼ 0.4 [2]. This divergent behavior
of thermal conductivity has been observed in the FPU model by different groups [2, 4, 10].

Systems with on-site potential. – Things turn out to be different for systems with on-site
potential. Having an on-site potential means that γ > 0 and the momentum conservation is
broken. A phonon band gap appears around zero frequency. Under the ergodic assumption,
heat conduction in such systems obeys Fourier’s law. For the sake of simplicity, we only
discuss the φ4 model.

The φ4 model has a quadratic inter particle potential, V (x) = x2/2 and a quartic external
potential U(x) = x4/4. Therefore, we have α = 1 and γ = 〈∑N

i=1 x
4
i 〉/〈

∑N
i=1 x

2
i 〉. The

ensemble average has no simple analytic expression. At temperature T = 1, the numerical
value γ ≈ 1.065 is found to be independent of length at least for N ≥ 64. The dispersion

relation, ω̂k =
√

4 sin2 k
2 + 1.065, is shown in fig. 1.

The mean-free-path lk depends on temperature via the parameters γ and λ, lk = vkτk =
2λπ sin k/(4 sin2 k

2 + γ). In the low-temperature limit, the φ4 model reduces to the harmonic
model where λ is infinity. Therefore, λ should decrease with temperature. From fig. 2, we
can see that γ increases monotonically with temperature. As a result, the mean-free-path
decreases as temperature is increased, since the heat conductivity is independent of N when
N is larger than the mean-free-path. The higher the temperature, the smaller the size effect
for the φ4 model as observed by Aoki and Kuznezov [10].
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In summary, from an effective phonon theory, we have derived an analytic formula for heat
conductivity in 1D nonlinear lattices, eq. (7). We find that the phonon-phonon interaction
due to the anharmonicity (nonlinearity) can be written as an effective harmonic one in terms
of the ensemble average, so we can attribute the heat transfer to the effective phonons which
can be treated in the same way as phonons in the harmonic lattice. The difference between
system without on-site potential and system with on-site potential lies in their renormalized
frequencies. For systems without on-site potential, there exists a zero-frequency mode with
infinite mean-free-path which is the physical mechanism for the anomalous heat conduction.
For systems with on-site potential, a phonon band gap near zero frequency appears leading
to the normal heat conduction, i.e. heat conduction obeys Fourier’s Law.
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