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Abstract. – We analyze by Monte Carlo simulations and analytically the spin dynamics of a
two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing
magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin
relaxation followed by an oscillating tail due to the electrons residing on closed trajectories.
The tail relaxes on a long time scale due to an additional smooth random potential and inelastic
processes. The developed analytical theory and Monte-Carlo simulations are in quantitative
agreement with each other.

Spin-dependent phenomena in semiconductors and semiconductor nanostructures have
been attracting an increasing interest during last decade (for review see, e.g., ref. [1]). The
understanding of the mechanisms of spin decoherence, usually considered as a Markovian
process, as well as the possibilities to control it is an important problem in the field. In the
two-dimensional (2D) zincblende structures the electron spin dynamics is governed by the
spin-orbit (SO) splitting of the conduction band. It originates from the lack of the inversion
center either in the bulk material as represented by the bulk inversion asymmetry (BIA or
Dresselhaus term [2, 3]) or the structural asymmetry of the heteropotential revealed by the
Rashba term [4]. In all the cases the SO interaction gives rise to the effective Zeeman magnetic
field which is characterized by the electron wave vector k-dependent spin precession vector
Ωk whose direction determines the axis and the absolute value is the spin precession rate. In
the collision dominated regime of electron motion with Ωτ � 1 (where Ω is the typical value
of |Ωk| and τ is the scattering time) the small spin rotation angles Ωτ between successive
collisions are not correlated, thus the spin relaxation rate τ−1

s is proportional to the Ω2τ [3,5].
This D’yakonov-Perel’ spin relaxation mechanism, which represents a Markovian process, is
the most important one in the wide range of temperatures and carrier concentrations [1,6–12].
At given sample parameters there are two possibilities to control the spin relaxation rate with
this mechanism. First, one may apply an external electric field in order to tune the Rashba
constant [9, 13]. Second, an external magnetic field can suppress the spin relaxation due to
the cyclotron rotation, Larmor spin precession or their combination [14, 15]. Although the
main mechanisms of the magnetic field effects on the Markovian spin relaxation are under-
stood [16], the peculiarities in the spin dynamics caused by the fascinating non-Markovian
transport phenomena in magnetic field, lavished attention only very recently [17–19], and are
scarcely known. Non-Markovian spin dynamics can arise for electrons interacting with nuclear
spins [20], hovewer, with a qualitatively different mechanism of the memory.
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Fig. 1 – Electron’s motion along the circling trajectory. The black circles are the scattering centers.
The solid line is the initial “circling” trajectory. The dashed line is the wandering trajectory after
the inelastic scattering event with scattering angle ϑ. Here a is the scatterer radius and b ∼ N−1/2 is
the mean distance between scatterers. Figure shown not to scale.

In this letter we point out and study a new non-Markovian effect in electron spin relaxation
in the magnetic field, namely, the appearance of a long-living spin polarization tail. We
consider a degenerated 2DEG with SO coupling scattered by short-range impurity centers (or
antidots) with radius a and concentration N in a presence of a magnetic field B directed
perpendicular to the structure plane. Assuming specular reflection by the scatterers, the
kinetics of electrons is characterized by the total scattering length l = 1/(2Na) and the
transport mean free path ltr = 3l/4. As shown in the pioneering work [21] (see also refs. [22–24]
and references therein) a fraction of electrons Pc(B) moving with the velocity v does not
experience scattering travelling along closed circular orbits. In the Na2 � 1 limit it is given by

Pc(B) = exp [−2πRc/l], (1)

where Rc = v/ωc is the cyclotron radius, ωc = eB/mc is the cyclotron frequency, e is the ele-
mentary charge and m is the electron effective mass. Physically, eq. (1) gives the probability
to find no scatterers in the area between the circles of radii Rc ± a, see fig. 1. As the electron
finished the cyclotron revolution without a collision it will stay on this orbit infinitely long,
thus demonstrating a non-Markovian behavior with an infinitely long memory. The fraction
of these electrons increases with the magnetic field resulting in the classical magnetoresis-
tance [23]. Here we discuss the role of the closed orbits in the spin relaxation. We show that
the spin dynamics of the electrons on such trajectories is strictly periodical and the total spin
falls exponentially down to the value determined by the fraction of circular orbits. Therefore,
a tail in the spin polarization can be observed. Further, we develop a theory describing the
decay of this tail caused by the scattering processes which transfer electrons between closed
and open “wandering” [23] orbits. Finally, we discuss the role of the quantum effects.
In order to obtain quantitative results, we consider a ẑ ‖ [001]-grown zinceblende quantum

well (QW) and assume that the SO interaction is dominated by the Dresselhaus term [3]:

HSO(k) =
�

2
(σ · Ωk), Ωk = Ω0[cosϕk,− sinϕk, 0]. (2)

where σ = (σx, σy, σz) is the Pauli matrix vector, Ω0 is the spin precession frequency at the
Fermi level and ϕk is the angle between the electron wave vector k and the x̂ ‖ [100] axis.
We assume classical dynamics of the electrons and their spins and subdivide the electrons

into two groups. The first one corresponds to wandering electrons, while the second one
corresponds to circling electrons, their relative fractions are 1−Pc(B) and Pc(B), respectively.
An accurate description of the wandering electrons in the moderate magnetic fields can be
done by using the kinetic equation and their spin decays exponentially with the rate [14]

1
τs(B)

=
Ω2

0τ

1 + (ωcτ)2
, (3)
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Fig. 2 – The results of the Monte Carlo simulation for 4096 electrons of the spin dynamics sz(t)/sz(0)
and the velocity autocorrelation function Kvv(t). The scatterer radius is a = 2 × 10−6 cm, v =
2 × 107 cm/s, N = 3 × 109 cm−2, and B = 0.2T, Ω0 = 4 × 1011 s−1 (panel (a)) and B = 0.4T,
Ω0 = 8× 1011 s−1 (panel (b)); ωc = 3.0× 1012 s−1/T.

where τ = ltr/vF . In the derivation of eq. (3) we assumed Ω0τ � 1(1) and neglected the
Larmor effect on spin relaxation as it is usually small in GaAs-based QWs. The Larmor effect
can be taken into account in a standard way [16].
The spin of the single electron with k(t)-dependent wave vector is described by the equation

∂s

∂t
+ s × Ωk(t) = 0. (4)

Equation (4) can be readily solved assuming that k rotates in the QW plane with frequency
ωc. For the initial condition 2s(0) = (0, 0, 1), we obtain for the z-component

2sz(t) =
ω2

c

ω2
c +Ω2

0

+
Ω2

0

ω2
c +Ω2

0

cos
(√

Ω2
0 + ω2

c t

)
. (5)

The solutions for sx,y are rather cumbersome and not presented here. It is seen in eq. (5)
that on the circling trajectory 2sz oscillates around the mean value ω2

c/(ω
2
c + Ω

2
0) → 1 (in

high fields, ωc 
 Ω0) with frequency
√
Ω2

0 + ω2
c , and the amplitude of the oscillations is

Ω2
0/(ω

2
c +Ω

2
0)→ 0 at ωc 
 Ω0. Note that these oscillations are insensitive to the initial phase

of the k rotation and thus all the spins of the circling electrons oscillate synchronously.
Therefore, if in the 2DEG the transitions between circling and wandering trajectories are

strictly forbidden, at t 
 τs(B) (defined by eq. (3)) the total spin does not decay to zero as
was assumed previously, but oscillates around the non-zero value

st
z = s0Pc(B)

ω2
c

ω2
c +Ω2

0

, (6)

where s0 is the initially excited spin. Further, we consider the case of the strong enough
magnetic fields, ωc 
 Ω0, where the oscillations of the circling electron spin are small and
spin relaxation is followed by a non-vanishing tail with magnitude st

z = Pc(B)s0. In order to
have an insight into the tail formation, we performed a Monte Carlo simulation of the electron
transport and spin dynamics with the results shown in fig. 2. It is seen that the exponential
decay of the velocity autocorrelation function Kvv(t) = 〈v(t)v(0)〉/v2 (shown in the inset) is
followed by the oscillations due to the circling electrons. The magnitude of the oscillations
corresponds to the value of Pc(B). The polarization exhibits an oscillatory tail in agreement
with eqs. (5), (6). We mention that in the nonquantizing field B = 0.5 T the tail has a
considerable magnitude, Pc(B) > 0.1, already at low mobilities µ = 5× 104 cm2/Vs.
Now we turn to the decay of the spin polarization tail. Any additional scattering pro-

cess such as inelastic scattering or scattering by a random potential destroys the tail. With

(1)This condition can be relaxed provided Ω0 � ωc (M. M. Glazov, to be published).
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the relaxation time approximation the z spin component is described by the coupled kinetic
equations

∂sc
z

∂t
= −sc

z[1− Pc(B)]− sw
z Pc(B)

τj(B)
,

∂sw
z

∂t
=

sc
z[1− Pc(B)]− sw

z Pc(B)
τj(B)

− sw
z

τs(B)
.

(7)

Here superscript c (w) corresponds to circling (wandering) electrons, respectively, and τs(B)
and τj(B) are the spin relaxation time for wandering electrons and the intermixing time
between the closed and wandering trajectories, respectively. The first term in the numerator
of the right-hand side of eqs. (7) denotes the transfer of the electron from the circling to the
wandering trajectory and is proportional to the scattering intermixing rate and the fraction
of the wandering trajectories 1− Pc(B) and the second term refers to the inverse process. In
deriving eqs. (7) we have neglected small oscillations of sc

z and took into account D’yakonov-
Perel’ spin relaxation of the wandering electrons (second term of the second line in (7)). The
eigenrates of the system τ−1

1,2 (B) are

1
τ1,2(B)

=
1
2

(
Γjs ±

√
Γ2

js + 4
Pc(B)− 1
τj(B)τs(B)

)
, (8)

where Γjs = τ−1
j (B)+τ−1

s (B). Thus, the total electron spin sz(t) relaxes according to the two
exponential law: sz(t) = α exp [−t/τ1(B)] + β exp [−t/τ2(B)], where coefficients α and β de-
pend on the initial condition and on B. Since τ2(B) ≥ τ1(B), the long-time sz(t) asymptotics
of sz(t) is determined by τ2(B) which can be identified with the tail relaxation time.
For example, in the limit of weak magnetic fields, Pc(B) � 1 and if τs(B) � τj(B), the

relaxation times are τ1(B) = τs(B) and τ2(B) = τj(B) and the total electron spin rapidly
decays to the tail value Pc(B)s0 and then slowly relaxes during the time τj(B) (as almost every
“additional” scattering transfers an electron from the circling to the wandering trajectory
where the spin is quickly lost).
When the magnetic field becomes stronger with ωcτ 
 1, τs(B) = τs(0) (ωcτ)

2 increases
quadratically with the field and the fraction Pc(B) = 1 − 3π/(2ωcτ) tends to unity. Two
limiting regimes as a function of B are possible. In weak fields, where the intermixing τj is still
much longer than τs(B), the spin tail relaxation time is field independent. With the increase
of B, the intermixing time becomes smaller than τs(B), and, therefore, the tail disappears. In
such a case only a small fraction (∼ ωcτ) of electrons is loosing at a given moment their spin,
however circling and wandering electrons are intermixed on a short timescale. Therefore the
tail is not observed but the spin relaxation time is

τ2(B) ≈ l

2πRc
τs(B) ≈ 2(ωcτ)2

3πΩ2
0τ

, (9)

being proportional to B3 (contrary to the standard result B2 [14]). Here τ2(B) does not
depend on the inelastic scattering time, despite the presence of strong inelastic scattering
which is necessary here only to intermix the trajectories sufficiently quickly. These results are
shown in fig. 3a illustrating the evolution of the spin relaxation process sz(t) and the rate with
the change in the number of wandering trajectories governed by the B-dependent ratio l/Rc.
In sufficiently strong fields, the number of trajectories colliding several times with the

same impurity, increases, and at a critical field such as 4πN(a + Rc)2 ≈ 4.4 and (Rc/l)2 =
4.4Na2/π � 1 [22] all the paths become confined. For the parameters considered in fig. 2,
this corresponds to B > 0.8 T. In this case the spin relaxation is strongly suppressed [25].
The detailed analysis of this regime is beyond the scope of this letter.
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Below, we consider two kinds of the microscopic processes which contribute to the in-
termixing time τj(B) between closed and wandering trajectories. Namely, we discuss the
destruction of the tail due to: i) the presence of the smooth potential, ii) inelastic processes.
i) In real QWs the typical disorder can be considered as a superposition of the short-range

scattering centers(2), the long-range smooth potential of the remote dopants and the interface
roughness(3). The correlation radius of this potential d is the distance between the dopant
layer and the QW [26,28]. We will be interested in the weak smooth disorder where the trans-
port scattering time by the long-range potential τl satisfies the condition τlωc 
 1, and, there-
fore, the circling trajectories remain at least approximately intact. The displacement of the
orbit center in the smooth potential, provided Rc 
 d, is δr ∼ ll/(ωcτl)3/2 ∼ √

R3
c/d(W/EF ),

where ll = vF τl is the transport mean free path there and W is the potential amplitude [29].
The transfer between trajectories is governed by the ratio δr/a. The rich transport [26] and
spin dynamics of the electrons in the system with two types of disorder are beyond the scope
of this letter. Here we consider the simplest situation where δr � a and thus δr � d. There-
fore, the electron drifts in the potential gradient averaged over its path and sweeps, during
n revolutions, an area S ∼ 2πRcnδr. It will be transferred from the circling trajectory to
the wandering as soon as it meets a short-range center in this area, i.e. SN ∼ 1. So, the
intermixing time can be estimated as

τ sp
j (B) ∼

Tc

NRcδr
∝ B3/2, δr/a � 1, (10)

where Tc = 2π/ωc is the cyclotron period and it is assumed that altr/(dRc) � 1. For the
purpose of the present paper, we note that the electron drift in the smooth potential leads to
spin relaxation even for circular trajectories, therefore the applicability of eq. (10) together
with the system (7) is guaranteed, provided the intermixing time is much longer than the spin
relaxation time of the circling electrons.
ii) The inelastic processes (electron-electron or electron-phonon scattering) change ran-

domly electron wave vector and energy and thus transfer electrons between circling and wan-
dering trajectories. In the low-temperature regime where the Fermi surface is well defined,
EF 
 kBT , where EF is the Fermi energy and kBT is the temperature measured in the energy
units, all the scattering processes are statistically quasi-elastic [30], i.e. the transferred energy
∼ kBT is much smaller than electron kinetic energy EF . The crucial question is to determine
the probability that the scattering at an angle ϑ (fig. 1) is not accompanied by an electron
transition from the circling to the wandering orbit. From fig. 1 it is clear that the displacement
of the circular orbit by a distance of the order of the impurity separation b will lead to the
electron collision with some scattering center, thus the probability should have a peak in the
vicinity of ϑ = 0 with an angular width of the order of b/Rc ∼ 1/(N1/2Rc). At larger angles
the probability saturates at a value close to Pc(B), representing the fraction of the circling
electrons. This prediction is corroborated by the Monte Carlo calculation, see fig. 3b.
In a degenerate 2D electron gas with carrier concentration ranging in the interval

1011–1012 cm−2 the Coulomb interaction is screened, the electron-electron scattering is almost
isotropic and its temperature dependency is determined by the Pauli-exclusion principle only.
At not too low temperatures, kBT � �cs

√〈k2
z〉, where cs is the speed of sound and

√〈k2
z〉 is

the root mean square of the electron wave vector in the growth direction, the electron-acoustic
phonon scattering is dominated by the deformation-potential coupling and is isotropic as well.
Thus we further assume that the inelastic scattering is isotropic and can be described in the

(2)These centers can be introduced artificially as antidots, see, e.g., [17, 26,27].
(3)The monolayer fluctuations of the QW interfaces induce the potential δV ∼ 1–10meV with lateral size
50–100 Å. Thus, the scattering length on the interface roughnesses a is of the order of 104 Å.
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Fig. 3 – (a) Electron spin sz time dependence calculated from eqs. (7), for different values of the
magnetic field: l/Rc = 1, 2, 5 from bottom to top, τj = 10τs(B = 0). (b) The scattering probability
found by the Monte Carlo simulation (solid lines) and the values of Pc(B) (dashed lines). The
parameters used in the calculations are shown above each curve. Other parameters are same as in
fig. 2. The accuracy of the Monte-Carlo computation is shown by the error bars.

framework of the relaxation time τj , which can be estimated as for the electron-electron and
electron-phonon scattering, respectively [31,32]:

τee
j = ζe

�

EF

(
EF

kBT

)2

, τph
j = ζph

ρc2s�
3

D2mkBT
√〈k2

z〉
. (11)

Here ζe = 4/[π ln(EF /kBT )] for Fermi level electrons, D is the deformation potential constant,
ρ is a material density, and ζph ∼ 1 is a numerical coefficient. At lower temperatures the
electron-phonon scattering is partially suppressed due to Pauli-exclusion principle and by
the phonon-freeze-out, and the coefficient ζph becomes strongly temperature dependent. Its
exact calculation represents an extremely difficult numerical tasks, but simple estimates show
that in the temperature range T ≤ 20K and for electron concentration Ne ∼ 1011 cm−2 the
electron-electron scattering is dominant. We note that the fraction of the circling electrons
Pc(B), eq. (1), has a purely geometric character, thus the tail is insensitive to the thermal
broadening of the electron distribution, provided inelastic processes are weak enough.
Finally, we would like to comment on the quantum effects neglected above. First, the

quantization of electron orbits leads to an oscillatory B-dependence of the spin relaxation
rate (3) [33]. This effect is small for high Landau levels (EF /�ωc 
 1) and vanishes as tem-
perature increases. Second, the quantization of the electron orbits modifies the relaxation
rates of inelastic scattering in eq. (11). However, for semiclassical Landau levels this modifica-
tion is negligible [30]. Third, the magnetic field leads to spin polarization either due to Zeeman
effect or as a result of the SO coupling and Landau quantization [4]. The former contribution
is proportional to gµBB/EF , where g is the electron g-factor and µB is Bohr magnetron. For
the typical GaAs structures g is small, besides it can be adjusted to zero with the structure
parameters [6]. The contribution |PL| = |〈ψL,±|σz|ψL,±〉| of the latter effect can be evalu-
ated for the L-th Landau level EL,± = �ωc(L ± √

γ2L+ 1/4) with γ = �Ω0/(2
√
EF �ωc) as

|PL| =
(
2
√

γ2L+ 1/4
)−1 and is negligible for high Landau levels with γ2L 
 1.

In conclusion, we have theoretically analyzed the spin dynamics of the 2D electron gas
scattered by short-range defects in classically strong magnetic fields. We have shown that
a tail in the spin polarization appears as a result of the collisionless circular motion of the
fraction of electrons. It was demonstrated that the tail decays due to the presence of an
additional weak long-range potential or due to inelastic scattering. In strong magnetic fields
the long-time spin relaxation is slowed down as a cube of the field. The predicted phenomena
open new perspectives in the spin dynamics control in 2DEG.
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