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Abstract. – The functional RG (FRG) approach to pinning of d-dimensional manifolds is
re-examined at any temperature T . The coupling function R(u) is shown to be a physical
observable in any d, exactly related to a free energy cumulant in a parabolic well. In d = 0
its beta function is displayed to a high order, ambiguities resolved; for random field disorder
(Sinai model) we obtain exactly the T = 0 fixed point R(u) and its thermal boundary layer
(TBL) form (i.e. for u ∼ T ) at T > 0. Connection between FRG in d = 0 and decaying
Burgers turbulence is discussed. An exact solution to the functional RG hierarchy in the TBL
is obtained for any d and related to droplet probabilities.

Elastic manifolds pinned by quenched disorder [1] are the simplest system to study glass
phases where (dimensionless) temperature is formally irrelevant, scaling as T̃L = TL−θ

with system size L. They are parameterized by a displacement (N -component height) field
u(x) ≡ ux, where x spans a d-dimensional internal space. The competition between elasticity
and disorder produces rough ground states with sample averages (ux − ux′)2 ∼ |x − x′|2ζ
(θ = d − 2 + 2ζ). These are believed to be statistically scale invariant, hence should be de-
scribed by a critical (continuum) field theory (FT). The latter seems highly unconventional
in several respects. First, an infinite number of operators become marginal simultaneously in
d = 4 − ε. This is handled via functional RG methods where the relevant coupling constant
becomes a function of the field, R(u), interpreted as the (second cumulant) disorder correla-
tor [2]. A more formidable difficulty then arises: at T = 0 both R(u) and, more generally,
the full effective action functional Γ[u], appear to be non-analytic(1) around u = 0. A linear
cusp in R′′(u) was found in one-loop and large-N calculations [2, 3]. Qualitative (two-mode
minimization) and mean-field arguments relate this cusp to multiple metastable states and
shock type singularities in the energy landscape [4]. As a consequence, ambiguities arise in
loop corrections [5]. Although candidate renormalizable FTs have been identified [5,6] (work-
ing directly at T = 0) this problem has, until now, hampered derivation of the field theory
from first principles (with the notable exception of the N = 1 depinning transition [7]).

Working at non-zero temperature T > 0 should help define the theory, and Γ[u] has
been argued to remain smooth within a “thermal boundary layer” (TBL) of width u ∼ T̃L
around u = 0. This width however shrinks as T̃L → 0 in the thermodynamic limit, and
if a fixed-u, large-L limit exists for any fixed small T it should unambiguously define the
(non-analytic) “zero temperature theory”: this program, called “matching”, was proposed
and studied in ref. [8]. It does, to some extent, rely on a scaling ansatz proposed there for the

(1)The non-analyticity of Γ occurs at finite scale (the Larkin length) contrarily to, e.g., the critical φ4 theory.
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TBL. This ansatz was shown [8] to be consistent to 1-loop with the droplet picture [9] and,
in the (near) equilibrium (driven) dynamics, to account for the phenomenology of ultraslow
activated (creep) motion [8, 10]. Although its physics is reasonable, it is not yet established
how a critical renormalizable FT emerges as T̃L → 0, with a finite unambiguous beta function.

Another field of physics where an (unconventional) field-theoretic description is needed, but
remains elusive, is high Reynolds number turbulence. There too the scale-invariant regime,
the inertial range, needs regularization at the small dissipation scale set by the (formally
irrelevant) viscosity ν [11]. In the simpler case of Burgers turbulence [12–14] connections to
disordered systems were studied [15]. However, even in that case, the interesting connections
between the ν → 0 limit and the T̃L → 0 limit of FRG were not addressed.

Given its central role in the FRG, it is of high interest to obtain the precise physical
content of the function R(u), beyond previous qualitative arguments. In the FT, a precise,
but abstract, definition was given, from the replicated effective action at zero momentum,
allowing for a systematic dimensional expansion. From it, it was observed that R′′(0) gives
the exact sample to sample variance of the center of mass of the manifold (a typical observable
with a universal T = 0 limit), while R′′′′(0) yields sample-to-sample susceptibility fluctuations
(a finite temperature observable which diverges as TL → 0).

In this letter we first show that, in any d, not only R(u), but also higher cumulants
and the full (replicated) effective action Γ[u] are physical observables. These can be directly
measured by adding a quadratic external potential and varying the position of its center. It
makes explicit the T = 0 physics of the FRG in terms of (functional) shocks of a decaying
(functional) Burgers equation and at T > 0 makes precise the relation between the TBL form
of the effective action and droplet probabilities. Next, the instructive d = 0 case is studied. It
amounts to a particle in a N -dimensional random potential (described by the partition sum
Z =

∫
due−V (u)/T , i.e. a simple N -integral over a random function V (u)) and related to N -

dim Burgers equation. For N = 1, the matching program started in ref. [8] is pushed to obtain
here the (unambiguous) beta function to four-loop. There the relation between the inviscid
distributional limit of Burgers equation [12] and the FRG in the TL → 0 limit is made precise.
In the sub-case of the Sinai (i.e. random field) model, the exact R(u) is computed at T = 0.
The TBL rounding form at T > 0 is also obtained. Obtaining the thermal rounding form in
any d amounts to solve an infinite hierarchy of (functional) exact RG equations: remarkably,
this can be achieved, the solution being parameterized by droplet probability data. All details
are given in a forthcoming publication [16].

The model studied here is defined by the total energy in a given sample (u ∈ RN ):

HV [u] =
1
2

∫
xy

g−1
xy uxuy +

∫
x

V (ux, x). (1)

The distribution of the random potential is translationally invariant, with second cumulant
V (u, x)V (u′, x′) = δd(x − x′)R0(u − u′) and V (u, x) = 0. This implies the statistical (tilt)
symmetry (STS) under (x, ux) → (x, ux + φx) [1]. Several results here are valid for arbitrary
gxy, but we often specialize to g−1

q = q2 +m2 in Fourier space, where the small mass provides
a confining parabolic potential and a convenient infrared cutoff at large scale Lm = 1/m. In
all formulas below one can replace

∫
x
≡ ∫

ddx → ∑
x and δ(x−x′) → δxx′ in the bare disorder

correlator, i.e. a lattice provides a UV cutoff which preserves STS. Numerous physical systems
are modelled by (1), e.g. i) CDW or vortex lattices [1], for a periodic R0(u); ii) magnetic
interfaces with bond disorder, for a short-range (SR) R0(u); iii) magnetic interfaces with
random field disorder, of variance σ, for a long-range R0(u) ∼ −σ|u| at large u.
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Let us recall the definition of R(u) in the FT. Using replica fields uax, the bare action is

S[u] =
1

2T

∑
a

∫
xy

g−1
xy u

a
xu

a
y −

1
2T 2

∑
ab

∫
x

R0(uax − ubx), (2)

with a = 1, . . . , p. Connected correlations of (1) are obtained expanding the W functional,

W [j] = ln
∫ ∏

ax duaxe
∫

x

∑
a
ja
xu

a
x−S[u] at p = 0. The effective action of the replica theory is

the Legendre transform Γ[u] =
∫
x

∑
a u

a
xj
a
x − W [j]. It generates (in an expansion in u) the

renormalized vertices and is the important functional for the FRG. To define the renormalized
disorder one performs an expansion in number of replica sums:

Γ[u] =
∑
a

∫
xy

g−1
xy u

a
xu

a
y

2T
−

∑
ab

R[uab]
2T 2

−
∑
abc

S[uabc]
3!T 3

+ · · · , (3)

where STS implies that the single-replica term is the bare one, and the form of the n-replica
terms, e.g. R[uab] is a functional depending only on the field uabx ≡ uax − ubx, whose value for
a uniform field (i.e. local part) defines R(u), i.e R[{uabx = u}] = LdR(u)(2). It was used in
the FT [5,6] to compute the beta function, −m∂m|R0R(u) = β[R](u), in powers of R.

We have shown that this abstract definition is equivalent to a physical one: for each
realization of the random potential V , one defines the renormalized potential functional V̂ [v] =
V̂ [{vx}] as the free energy in the presence of an external quadratic potential centered at
ux = vx:

e−
1
T V̂ [{vx}] =

∫ ∏
x

duxe−
1
T HV,v [u], HV,v[u]=

∫
xy

g−1
xy

2
(ux − vx)(uy − vy)+

∫
x

V (ux, x). (4)

Using STS one sees that the renormalized energy landscape has second cumulant correlations
V̂ [{vx}]V̂ [{v′x}] = R̂[{vx − v′x}] (averages with respect to V ). The result shown in [16] is that
R̂ = R. Hence one can measure the 2-replica part of the effective action by computing the
free energy in a well whose position is varied. Choosing a uniform vx = v yields

V̂ (v)V̂ (v′) = LdR(v − v′), (5)

where V̂ (v) = V̂ [{vx = v}] is the local part, using a parabolic potential centered at ux = v.
Performing the Legendre transform [16] (more involved) relations are found for higher cumu-
lants, e.g. S = Ŝ − 3symabcgxyR

′
x[vab]R′

y[vac]. The STS property was used: for a non-STS
model, e.g. with discrete u, either it flows to the STS fixed point as m → 0, and the above
holds asymptotically, or it does not and a (more involved) extension holds [16].

From (4) the renormalized (pinning) force functional Fx = V̂ ′
x[v] ≡ δV̂ [v]/δvx is related

to the thermally averaged position in the presence of the shifted well, via Fx =
∫
y
g−1
xy (vy −

〈uy〉HV,v
). Hence the force correlator functional R′′

xy[v] has a nice expression. For uniform
vx = v and at T = 0 it is simple: denote ux(v) the minimum energy configuration of HV,v[u]
for a fixed vx = v and ū(v) = L−d ∫

x
ux(v) its center-of-mass position. Then, denoting

∆(v) = −R′′(v):

(v − ū(v))(v′ − ū(v′)) = ∆(v − v′)L−dm−4 (6)

which generalizes to non-zero T (replacing ū(v) by its thermal average) and to the full multi-
local functional(3). Note that (6) is exact for any m, though only the rescaled limit of

(2)Such zero momentum renormalization conditions are standard in a massive theory. It is not presently
known how to close FRG using other conditions, e.g. symmetric external momenta, as in massless theories.

(3)Equations (5), (6) generalize to any N , and to two copies as used in chaos studies [17] V̂i(v)V̂j(v′) =
LdRij(v − v′).
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Fig. 1 – Ground state of a directed polymer d = 1, N = 1: at least one shock occurs (at some v = vs)
as the center of the quadratic well changes from v1 to v2 and the GS from u1(x) to u2(x).

m−ε+2ζ∆(um−ζ) exhibits universality for m → 0. For fixed L/a, a being the UV cutoff scale,
the minimum is expected unique for continuous distributions of V , except for discrete values
vs, the positions of shocks where ū(v) switches between different values (e.g. u1 to u2 see fig. 1)
and the force is discontinuous (at T = 0): below, the shock strength is noted u

(s)
21 = u2 − u1.

The renormalized pinning force satisfies an exact RG (ERG) equation (with ∂g = −m∂mg):

−2m∂mFx[v] =
∫
yz

∂gyz(TF ′′
xyz[v] −F ′

xy[v]Fz[v]) (7)

a functional generalization of the decaying Burgers equation to which it reduces for d = 0:

∂tF (v) =
T

2
F ′′(v) − F ′(v)F (v) (8)

with t = m−2, F (v) = V̂ ′(v), usually written ∂tu+u′xu = νu′′xx, identifying u, x, ν in Burgers to
F, v, T/2 in the FRG. The stochasticity in (7), (8) comes from their (random) initial conditions
F (v) = V ′(v) and Fx[v] = V ′

x[v] for t = 0,m = ∞. Equation (8) (and its primitive) is equiva-
lent to an infinite ERG hierarchy for the n-th moments S̄(n)(v1,2,...,n) = (−)nV̂ (v1), . . . , V̂ (vn)
in d = 0:

−m∂mR(v) =
2T
m2

R′′(v) +
2
m2

S̄110(0, 0, v), (9)

−m∂mS̄
(n)(v1,2,...,n) =

nT

m2
[S̄(n)

20...0(v1,2,...,n)] +
n

m2
[S̄(n+1)

110...0(v1,1,2,...,n)], (10)

where S̄ ≡ S̄(3) = Ŝ, subscripts denote partial derivatives and [. . .] is symmetrization. A
similar, more formidable looking functional hierarchy exists for any d:

−m∂mR[v] = T∂gxyR
′′
xy[v] + ∂gzz′ S̄

110
zz′ [0, 0, v] (11)

together with ERG equations for S̄ and higher moments. In both cases a related hierarchy
exists for the cumulants R, S, . . . defining Γ[u] in (3), studied in [8]. The usual RG strategy
is to truncate them to a given order in R yielding the beta function. Ambiguities in the limit
of coinciding arguments in (10), (11) may arise in doing so directly at T = 0.

We start with d = 0 (and N = 1), a particle in a 1D random potential V (u), aiming
to obtain an unambiguous beta function as m → 0. We define rescaled T̃ = 2Tmθ and
R(u) = 1

4m
ε−4ζR̃(umζ) (this should yield a FP when correlations of V grow as uθ/ζ). Trying

first standard loop expansion at T > 0 (R̃ analytic), we obtained from (10) the beta function
−m∂mR̃|R0 = β[R̃, T ]. To n-loop, it is a sum of terms of order T̃ pR̃n+1−p, 0 ≤ p ≤ n.
The one-loop equation (i.e. adding T̃ R̃′′ to the first three terms in (12) below) exhibits the
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u1 v u3v2u2u* u* v3

V2
V1

E3
E1

E2

u

V(u)

Fig. 2 – Construction of the joint probability P ({Ei, vi}) that V̂ (vi) = Ei at points vi: the random
walk V (u) must remain above all parabola centered on the vi of apex Ei intersecting at points u∗

i .
Each independent interval [u∗

i , u∗
i+1] can be treated as in [18].

standard TBL for u ∼ T̃ discussed in [8]. To 2-loop a term −1
4 T̃ R̃′′′′(0)R̃′′(u) appears, and

using the TBL identity limm→0 T̃ R̃
′′′′(0) = R̃′′′(0+)2, exact at one-loop, produces precisely the

2-loop “anomalous” term in (12) below. Alas, one finds [16] that this procedure fails at 3-loop.
One must instead examine the whole ERG hierarchy as in [8]. There, a method to obtain
the unambiguous beta function was found by verifying order by order, a continuity property
of the Γ-cumulants S

(n)
11...1(u1,...,n) upon bringing points together. We completed in [16] the

derivation of the (local) beta function, obtaining (up to a constant, with R′′ = R̃′′ − R̃′′(0)):

−m∂mR̃ = (ε− 4ζ)R̃ + ζuR̃′ + [
1
2

(R̃′′)2 − R̃′′(0)R̃′′] +
1
4

((R̃′′′)2 − R̃′′′(0+)2)R′′ + (12)

+
1
16

(R′′)2(R̃′′′′)2 +
3
32

((R̃′′′)2 − R̃′′′(0+)2)2 +
1
4
R′′((R̃′′′)2R̃′′′′ − R̃′′′(0+)2R̃′′′′(0+)) +

+
1
96

(R′′)3(R̃(5))2 +
3
16

(R′′)2R̃′′′R̃′′′′R̃(5) +
1
8
R′′((R̃′′′)3R̃(5) − R̃′′′(0+)3R̃(5)(0+)) +

+
1
16

(R′′)2(R̃′′′′)3 +
9
16

R′′((R̃′′′)2(R̃′′′′)2 − 1
6
R′′′(0+)2(R̃′′′′)2 − 5

6
R̃′′′(0+)2R̃′′′′(0+)2) +

+
5
16

((R̃′′′)2 − R̃′′′(0+)2)((R̃′′′)2R̃′′′′ +
1
10

R̃′′′′R̃′′′(0+)2 − 11
10

R̃′′′′(0+)R̃′′′(0+)2) + O(R̃6).

The first line are one- and 2-loop terms, the second is 3-loop, the last three are 4-loop. Normal
terms (i.e. non-vanishing for analytic R(u)) are grouped with anomalous “counterparts”
to show the absence of O(u) term, a strong constraint (linear cusp, no supercusp): these
combinations can hardly be guessed beyond 3-loop. This shows the difficulty in constructing
the FT, already in d = 0. We emphasize that (12) results from a first-principle derivation.

R(u) being a physical observable, we look for cases where it can be computed. The
Brownian landscape V (u), the so-called Sinai model, is interesting as the d = 0 limit of random
field disorder. Recently, we obtained the full statistics of (deep) extrema in the presence of a
harmonic well [18]. This is generalized [16] as described in fig. 2. Graphically the renormalized
landscape V̂ (v) = E is constructed by raising a parabola Pv, y(u) = −m2

2 (u− v)2 + E′ from
E′ = −∞ until it touches (for E′ = E) the curve y = V (u) at point u = u1(v), position
of the minimum of HV,v(u), E being the maximum (apex) of the parabola. Pv touching at
two points u1(v) < u2(v) signals a shock at u = v. Computing P (E1, v1;E2, v2) (see fig. 2)
yields [16] (with m2 = 1, σ = 1, a = 2−1/3, ba2 = 1,

∫
λ
≡ ∫ +∞

−∞
dλ
2π and R̄(v) = R(v) −R(0))

R̄(v) = −2
1
3
√
πve−

v3
48

∫
λ1

∫
λ2

[1 − 2(λ2−λ1)
2

b2v ]ei
v
2b (λ1+λ2)− (λ2−λ1)2

b2v

Ai(iλ1)Ai(iλ2)
×

×
[

1 +
v

∫ ∞
0

dV e
v
2VAi(aV + iλ1)Ai(aV + iλ2)
Ai(iλ1)Ai(iλ2)

]
. (13)
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One finds R̄(v) ≈ −v + 0.810775 at large v, and recovers [18] u2 = −R′′(0) = 1.054238. Once
rescaled, (13) should be a FP of (12) corresponding to ζ = ζRF = 4/3.

At non-zero T , one re-examines (4) taking into account, within a droplet calculation, the
probability density D(y)dy for two degenerate minima of V , spatially separated by y = u2−u1

(D(y) = D(−y)). It yields the TBL form (for v ∼ Tm2):

R′′(v) = R′′(0) + m4T 〈y2F2(m2yv/T )〉y (14)

with F2(z) = z
4 coth z

2− 1
2 and 〈. . .〉y ≡ ∫

dy . . .D(y) is normalized by the STS identity 〈y2〉y =
2/m2. Since F2(z) ∼ |z|/4 at large z (14) yields consistent matching between finite-T (droplet)
quantities in the TBL and the cusp of the T = 0 FP for v = O(1), with R′′′(0+) = m4

2
〈|y|3〉y

〈y2〉y
.

Equation (14) should be more generally valid in d = 0 (any N), but in the RF case it is
known [18] that (setting m = σ = 1) D(y) = 1

2

∫
λ1,λ2

Ai′(iλ1)e
i(λ1−λ2)|y|/b

Ai(iλ1)Ai2(iλ2)
is found to be consis-

tent with R′′′(0+) = 0.901289 from (13). Remarkably, (14) generalizes to higher moments S̄(n),
with functions Fn obtained in [16] yielding an exact “droplet” solution of the hierarchy (10).

Since in d = 0, the FRG (8) identifies with decaying Burgers, the correspondence

−R′′(0) ≡ u(x)2,
T

2
R′′′′(0) ≡ ν(∇u(x))2 = ε̄ (15)

holds (more generally u(x)u(0) ≡ −R′′(x)) with finite limits as ν → 0. The second is the
dissipative anomaly, also present in 3D Navier-Stokes. In Burgers it is due to shocks. The
(equivalent) finite limit of the l.h.s. implies a thermal boundary layer in the FRG. Dilute
shocks in Burgers are equivalent to droplets and a TBL in the FRG where u21 ≡ u(0+)−u(0−),
and (14) can be recovered from a single shock solution in Burgers upon averaging over its
position [16]. The celebrated Kolmogorov law in the inertial range:

1
2
S̄111(0, 0, u) ∼ ε̄u ≡ 1

12
(u(x) − u(0))3 ∼ −ε̄x (16)

corresponds to the non-analytic behaviour of the third cumulant at small argument in the
T = 0 theory. Identical coefficients in (15) and (16) are a consequence of matching across the
TBL (i.e. viscous layer), identifying the second derivative of (9) at v = 0 (for ν > 0) and
v = 0+ (for ν → 0), i.e. ∂tR

′′(0) = TR′′′′(0) ≡ ∂tR
′′(0+) = S̄112(0, 0, 0+). Similar relations

exist in stirred Burgers (and Navier-Stokes) [11]: there the dissipation rate ε̄ is balanced by
forcing, instead of scale-invariant time decay of correlations, but small-scale shock properties
should be rather similar. Closure of hierarchies similar to (10) was proposed there [13] in terms
of an “operator product expansion”. Recent studies cast doubt on such simple closures [12]:
N = 1 decaying Burgers (and stirred [14]) can be constructed in the inviscid limit (ν → 0)
using distributions, e.g. tF ′(v) = 1 − ∑

s u
(s)
21 δ(v − vs). It is shown there that shock “form

factors” (i.e. size distribution) determines small-distance (non-analytic) behaviour of moments

of velocity differences, (F (v) − F (0))p ∼ µpvsign(v)p+1, with µp =
∑

s(u
(s)
21 )pδ(v − vs). In the

FRG these are equivalent to droplet distributions as we show [16] that µp = 〈|y|p+1〉y/〈y2〉y,
e.g. consistent with R′′′(0+) ≡ u(0+)∇u(0) = µ2/(2t2) given above. The T = 0 distributional
limit of (8) derived in [12] is equivalent to ∂tV̂ (v) = − 1

2F (v+)F (v): it validates the first-
principle FRG discussed above yielding (12) (the central property being continuity of all S̄1...1

since F (v) remains bounded). These considerations should be universal for dilute shocks, i.e.
independent of details of shock probability distributions. For RF disorder the full distribution
of shock parameters {u(s)

21 , vs} is known exactly [19]. It is used in [16] to obtain from (6)
another expression for ∆(v) fully consistent with (13).
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Similar droplet estimates in higher d yield an exact solution [16] of the functional hierar-
chy (11) for all moments. In the TBL, m2vx = O(T ), the R[v] functional reads:

R[v] =
1
2
vxR

′′
xy[0]vy + T 3

∑
i

〈
H2

(∫
xy

vxg
−1
xy u

(i)
12,y/T

)〉
D

, (17)

where H ′′
2 (z) = F2(z). To find this solution one considers a small density (of order Tmθ) of

well-separated “elementary droplets”, i.e. local GS degeneracies u
(i)
12,x = u

(i)
2,x − u1x. 〈. . .〉D

denotes the average over them. Equation (17) relates droplet probabilities to the TBL in the
FRG.

To conclude, we related FRG functions, e.g. R(u), to observables. This allows to compute
them in simple cases, and provides a method to measure them in numerics and experiments.
Their relations to shocks in energy landscape was made precise, via a generalized Burgers
equation. Shock form factors and droplet distributions were related to the FRG functions.
Tantalizing questions such as the extent of universality in the TBL, how do properties of
Burgers (d = 0) extend to functional shocks (e.g. Kolmogorov law) can now be adressed.
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