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Abstract. – Taking advantage of the specific base-pairing interaction of DNA, I propose
a robust method for creating melt topological or “olympic” gels. Flexible polymers which
have been end-decorated with complimentary base-pair sequences will undergo end-closing
reactions with either themselves (forming loops) or with neighboring chains (creating linear,
but lengthened chains). The loop-forming or chain-forming process can be controlled by how
many distinct ligand pairs occur in the system. A gel formed of these interlocking rings will
display a sensitivity to dissolve when brought into contact with a large concentration of DNA
fragments, thus giving a biologically-specific trigger for drug delivery by olympic microgels.

Introduction. – Topological gels (so-called “olympic” gels [1] because of their schematic
resemblance to the entwined rings of the flag of the Olympic Games) should prove to be
interesting materials with unique mechanical properties [2]. Each chain in the gel has been
end-reacted with itself to form a physical loop encircling a number of its neighboring, also
cyclic, chains. Stress in such a material is stored through a similar mechanism to a regular,
physical gel where polymer chains are crosslinked through chemical bonds or physical associ-
ations. When such a regular gel is deformed, the crosslinks restrict the otherwise Gaussian
connecting chains, lowering entropy and storing free energy. In the topological gel, however,
the role of the physical constraints of chain connectivity give a markedly non-standard elas-
ticity. The strength of the effect is controlled, roughly, by the average topological invariant
n, controlling the number of chains a given melt-loop is entwined with. When n � 1, the
melt consists essentially of unconnected loops, which in equilibrium take the form of lattice
animals, squeezed to smaller dimensions than freely Gaussian chains [3]. As n ≈ 2 clusters
of branched chains of loops appear in the melt, and it is possible for a percolating cluster of
connected chains to appear. These “lightly connected” examples can be contrasted with the
Gaussian extreme in which each chain acts independently of all its surrounding chains, and
thus encompasses N1/2 other loops, where N is the degree of polymerization of the polymers.
While it is possible for a single chain to entrap many more rings than this (on the order N2

is maximum), it is impossible for each chain to achieve this maximum.
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Fig. 1 – Schematic.

Simply mixing up a melt of end-reacting polymer is not sufficient to create the Gaussian
olympic gel, however [1]. The process of closing rings competes with end-end reactions be-
tween different chains, so that the end-product of the reactions is a polydisperse mixture of
chains of many molecular weights with several isolated rings interspersed. Indeed, given that
a single ideal polymer will encompass N1/2 other chain-ends within its swept-out volume,
and only one of these will correspond to the ring-closing reaction, we quickly come to the
conclusion that some other, clever method will have to be used to create the gel. The original
suggestion was to complete the cyclization reaction in solution in several stages [1], and elab-
orations including a stepwise reaction of large and small rings [4], and slide-ring chain-chain
crosslinks [5] have been proposed.

Here, I propose a method to achieve an olympic gel with a controlled n from the melt state
in a single reaction step, taking advantage of the wonderfully specific reaction of sequences
of DNA bases. This property of DNA has been taken advantage of to self-assemble complex
structures [6–8], scaffolds for computing machines [9], mechanical devices [10], and patterns
of surprising complexity [11]. There is the possibility that the technique could be used to
fabricate exotic polymer architectures with biologically precise control over molecular weight,
form, and composition [12]. This “DNA-origami” technique consists of designing specific
base-pair sequences that will uniquely bind a target strand of DNA. Essentially, the DNA
strands can be thought of as an infinitely tunable set of specific “sticker” interaction sites.
If, for instance, each chain in the melt were decorated with unique DNA ligands and their
complimentary ligands, then each chain could only end-react with itself, forming loops without
the competing chain-growing reaction.

In the first section below, I explore a model where there are are p different DNA lig-
and/compliment pairs present in the melt. There is a tradeoff between chain growing and
ring closing, and I calculate the average number of mutually trapped rings in two models.
After briefly discussing the results of that analysis, I offer some conclusions and speculate on
the possibility of using these gels in advanced, targeted drug delivery.

Simple model. – I consider a molten blend of p distinct polymer components. The i-th
polymer species consists of a flexible central chain of N monomers to which have been added
short DNA ligands ai and āi, as in fig. 1. The ligand ai consists of a small number of DNA
base-pairs, which are designed a priori so that specific partial pairing between ai and aj �=i

sequences costs free energy. The ai ligand binds specifically to its base-pair conjugate āi.
When the free ends of a single chain are brought into close proximity, the two complimen-

tary strands bind together, and a ring-closing reaction occurs, as in fig. 1.
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In a melt, however, the situation is more complicated. Here, each chain will attain Gaussian
statistics, and will therefore invade a volume comparable to R3

g ∼ N3/2. Given that each chain
occupies a volume proportional to its molecular weight, the number of other chains a given
chain encounters is N1/2. Thus, the number of reactable chain ends our given chain will
encounter in its close proximity is the same, N1/2. As each chain end has one of p distinct
DNA ligands, there will be

Ne ≈ N1/2p−1 + 1 (1)

reactable ends in the chain’s available volume. Thus, if p � N1/2, then our test chain will be
much more likely to encounter a reactable end from another chain and will be unlikely to form
a loop. If p � N1/2, then the only reactable end available will come from the test chain itself.

DNA base pairing is sensitive to temperature, with various base-pair sequences separating
from each other in the neighborhood of 50–70 ◦C. Above this temperature, all looped and
larger chains will separate, and the system will behave as an ordinary homopolymer melt.
When the temperature is lowered, however, the base-pairing of the end groups will commence.

The basic timescale for the reaction is the chain relaxation time, τr, which for N smaller
than the entanglement threshold scales as N itself. In this time, each chain will explore its
invaded volume as the chain conformation randomizes. During this time, the probability that
one chain end will find its other end and form a loop is

pring = 1/(1 + N1/2p−1) =
p

p + N1/2
, (2)

while the probability that the end will find a mate from a different chain is

pchain = N1/2p−1/(1 + N1/2p−1) =
N1/2

p + N1/2
. (3)

A first estimate for the average linking number of a ring in this melt is based on assuming that
these initial probabilities will govern the ultimate fate of the melt. That is, the total fraction
of ring chains at the end of the reaction is pring. Any given ring will still occupy in space a
volume of N3/2, that is N1/2 other chains, or pringN

1/2 other looped chains. If a fixed fraction
of these ideal rings are topologically linked, then the average linking number of the system is

nav = pringN
1/2 =

pN1/2

p + N1/2
(4)

and the number of independent components needed to ensure a macroscopic cluster of linked
rings is given by

nav = 2 → p =
2

1− 2N−1/2
, (5)

which as N → ∞ becomes 2. That is, for extremely long chains, a mixture of just two distinct
end-labels is sufficient to generate large clusters of topoligical gels. On the other hand, if
the number of different components gets large, p → ∞, then nav → N1/2, that is, the ideal
Gaussian melt olympic gel.

Dynamic model. – However, a more realistic dynamic model of the polymerization pro-
cess could be made. Here, the single linear chains are the fuel that either add to the pop-
ulation of ring polymers, or add themselves to the ever lengthening homopolymer. As the
relaxation time for larger chains becomes larger (∼ N for short chains, and ∼ N2 for entan-
gled chains [13]), and the self-diffusion times become even larger (∼ N2 for unentangled, and
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∼ N3 for entangled chains), I will assume that only the unreacted linear chains are sufficiently
mobile to react. I will let φi(t) stand for the volume fraction at time t of the species which
have undergone i addition reactions. Thus, φi(t) is the volume fraction of chains with (i+1)N
monomers, and φ0(t) is the volume fraction of single, unreacted chains. I will additionally let
φr(t) stand for the volume fraction of ring polymers.

Unreacted linear chains will disappear at the rate:

∂tφ0 = −∂tφr − ∂tφ1 − ∂tφ2... (6)

which merely expresses the idea that single chains become rings, or add to larger chains. The
rate at which rings are formed is simply proportional to the number of unreacted rings left in
the system:

∂tφr = pringφ0. (7)

The rate at which chains with i + 1 subchains change their population is

∂tφi = pchainφ0(φi−1 − φi), (8)

expressing the fact that φi is created in the system because of pairwise contacts between
i− 1 chains and unreacted chains, and the fact that φi is destroyed by pairwise contacts with
unreacted chains, adding to φi+1. Equations (6)-(8) imply

∂tφ0 = −pringφ0 − pchainφ0(φ0 − φ1 + φ1 − φ2 + ...) = −pringφ0 − (1− pring)φ2
0, (9)

with an initial condition
φ0(t = 0) = 1 (10)

expressing the fact that the system starts as a purely unreacted melt. The solution of eq. (9)
with eq. (10) is

φ0(t) =
pring

epringt − (1− pring)
. (11)

From this, it is trivial to deduce the time dependence of the volume fraction of ring chains,
φr using eq. (7) with φr(0) = 0:

φr(t) =
pring

1− pring

[
log(epringt − (1− pring))− log pring − pringt

]
. (12)

Thus, when the system is fully reacted, the total volume fraction of rings in the system is

φr(∞) =
pring

1− pring
log

(
1

pring

)
, (13)

which allows a calculation of the average number of rings entangling with a test ring, nav.
Indeed, as above, the average number of rings linked to a test ring is given by

nav = φr(t = ∞)N1/2 = p log
N1/2 + p

p
. (14)

Clearly, when the number of distinct end-pairs, p is on the scale of N1/2, the average linking
number scales as nav ∼ N1/2, and we have a Gaussian olympic gel. On the other hand, the
threshold at which large clusters of loosely linked rings appear is defined by nav = 2, which
forces the relation presented in fig. 2. Thus, an ordinary end-reacted melt (p = 1) will require
N > 40 for chains of rings to appear, and for nav = 3 clusters, we require N > 355. Notice
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Fig. 2 – p vs. N with nav = 2, 3, 4.

that in each of these cases we are far from the Gaussian linking number. As we increase p, thus
forcing more self-closing reactions, each of these molecular-weight thresholds decreases, so it
becomes easier and easier to achieve a particular nav with smaller molecular-weight chains.
Indeed, we can require a given average linking number nav by requiring

N = p2(enav/p − 1)2, (15)

a relation that can be nearly analytically inverted [14] to find the required number of com-
ponents p for a given molecular weight N , to achieve a particular nav. Equation (14) takes a
particularly simple form when the average linking number is written in terms of the maximal
linking number, nav = N1/2n∗

av, and the number of distinct end-linking pairs is written as
p = N1/2p∗:

n∗ = p∗ log
(
1 +

1
p∗

)
, (16)

as shown in fig. 3. With p∗ = 1, we achieve an average scaled linking number of log 2, or an
unscaled linking number approximately 70% of the Gaussian value of N1/2. Figure 3 should
prove a useful guide in designing olympic gels with specific values of nav.

Discussion. – The relatively simple prediction from the simple theory that p = 2 is
sufficient to induce large clusters of topologically linked chains is superseded by the criterion
given in eq. (15), as is hardly surprising. What is perhaps surprising is the enhanced linking
at small pring produced in the dynamic model, which argues well for the behavior of actual
experimental olympic-gel systems.
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One assumption that is made above, in each model, is that the rings formed in the system
are entangled in the same manner as Gaussian ring-chains would be. The validity of this
assumption could well break down if the typical times for linking reactions for neighboring
chains becomes much longer than the self-diffusion time of the chains. In this case, the entropic
constraint of having the ring polymer maintain its tips at the same spot creates a “topological”
pressure [2] that favors matrix chains diffusing out of the ring. Thus, the rings could collapse
into lattice-animal objects in a matrix of disconnected chains. Fortunately, the ring-closing
timescale can be made very short by employing smaller N chains in the system.

Fig. 4 – Hexagonal-close-packed olympic membrane, and a paper model.
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The system produced in the manner outlined here will consist of a mixture of linear and
ring-clusters. The linear chains are, however, uniformly larger in molecular weight than the
ring polymers, by at least a factor of two. A judicious choice of solvent treatment after the gel
has formed can produce a swollen topological gel with linear chains in a bad-solvent situation.
Thus macroscopic phase separation into gel, sol, and pure linear polymer will spontaneously
form, giving access to the topological gel as a pure material.

Lastly, it is worth noting that the connectivity of a gel so formed is entropically sensitive
to degrading in the presence of short DNA strands found in the inter-cellular environment
of cancerous tissue. If a significant portion of the ai ligands are chosen so as to complement
fragments typically found in this environment, the rings of the gel will open spontaneously as
the complexaction reaction will leave the enthalphy of the system unchanged, but will allow
the chain free ends to separate giving an entropic driving force. Thus, a small microgel formed
in this way could be used as a sensitive targeting module for the delivery of specific drugs to
specific kinds of tumors.

One last bit of speculation is to take advantage of the DNA origami technique to drive
more ordered topological assemblages of chains. More sophisticated design of the DNA ligands
than envisioned in this paper are required to form the loops with specific interlocking patterns,
but given the wonderful control that has been exhibited to date [6–12], this seems a possible
and worthwhile material: olympic membranes as in fig. 4.

Conclusion. – I have proposed here a robust method for creating melt topologically
entangled olympic gels. The key to the process is to mix many, many polymers with distinct
end-group stickers, thus suppressing the tendency for end-joining chain-lengthening reactions.
A gel formed of these interlocking rings could well display a sensitivity to dissolve when brought
into contact with a large concentration of DNA fragments, thus giving a biologically-specific
trigger for drug delivery by microgels formed in this manner.
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