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Abstract. – The phase behavior of a melt of two-scale multiblock copolymers has been
theoretically studied in the framework of the Weak Segregation Limit theory with a two-
component order parameter. The existence of a thermodynamically stable mesophase with
two scales of the space periodicity has been revealed for a melt of monodisperse nonperiodic
heteropolymers. For the first time a discontinuous change with temperature of the spatial
period of the mesophases has been predicted.

Among the systems dealt with by soft-matter physics of prime importance are solutions
and melts of block copolymers whose linear macromolecules consist of rather long blocks of
single-type monomeric units [1,2]. A distinctive feature of the phase behavior of such systems
is their ability to form spatially periodic mesophases with the periods lying in the nanometer
scale [3,4]. Essentially, by varying the architecture of block copolymers’ macromolecules, it is
possible to obtain under the same conditions mesophases of different morphology [3,5–7]. The
thermodynamic behavior of heteropolymer liquids of such a type is successfully described by
the self-consistent field theory based on the solution of nonlinear parabolic partial differential
equations. In the framework of this theory, analytic results can be obtained only in two
limiting cases, namely, Weak Segregation Limit (WSL) and Strong Segregation Limit (SSL).
In this paper we will apply the first of these, which rests on the ideas of the Landau theory
of phase transitions [8]. Leibler [9] was the first who invoked the WSL theory to describe
the phase behavior of an incompressible melt of monodisperse diblock copolymers. The phase
diagrams constructed by him for macromolecules of different length and chemical composition
comprise regions of the existence of three mesophases, i.e., Body-Centered Cubic (BCC),
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Fig. 1 – Molecular architecture of a block copolymer macromolecule considered earlier [12,13]. Rect-
angles of different colors correspond to the blocks of chemically different monomeric units.

Hexagonal (HEX) and Lamellar (LAM). These classical mesophases, as well as the Gyroid
mesophase found later [10], were long believed to be the only possible in melts of binary block
copolymers [11]. However, recently the authors of papers [12,13], studying the phase behavior
of melts of binary linear block copolymers with the two-scale architecture (fig. 1), predicted in
the framework of the WSL theory the possibility of the thermodynamic stability of a number of
other mesophases, such as Simple Cubic, Face-Centered Cubic and that known as BCC2. The
reason for the appearance of these non-classical mesophases is a strong angular dependence of
the vertex functions of the Landau free energy describing these block copolymers. A specific
feature of the melts of such two-scale macromolecules is that their structure factor S(q) can
have two maxima (fig. 2) associated with two branches of the nontrivial spinodal for some
values of the parameters characterizing the chemical structure of these copolymers [14]. Of
particular interest are Double Spinodal Points (DSPs) belonging to both such branches since
at these points the loss of absolute thermodynamic stability of the spatially homogeneous
state occurs simultaneously for wave vectors of two different lengths. Because of this, there are
serious reasons to expect the emergence of thermodynamically stable mesophases characterized
by two spatial periodicity scales in the vicinity of a DSP line. Obviously, the phase diagrams
presented in papers [12,13] do not claim to be correct in this area for the values of the structure
characterizing parameters m and n (see fig. 1) located within the white region in fig. 2. This
is because the traditional approach of the WSL theory with one-component order parameter
employed in these papers in principle excludes two-scale mesophases from consideration.

Fig. 2 – Classification diagram of the structure factor S(q) for a melt of the block copolymer whose
architecture is schematically depicted in fig. 1. The function S(q) has one and two maxima in the
white and gray areas, respectively. For the values of the parameters m and n located on the heavy
(DSP) line the heights of both maxima are equal.
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One of the central problems of the WSL theory consists in deriving expressions that relate
the coefficients of the amplitude expansion of the Landau free energy with the vertex functions.
The first to present such expressions for three particular two-scale mesophases was Nap [15].
Later a diagram algorithm was suggested [16] enabling one to write down analogous expressions
for any mesophase with two scales of spatial periodicity. Using this algorithm to consider a
melt of two-scale periodical macromolecules the authors [17] managed to reveal for the first
time the possibility of the existence in the phase diagram of a region of thermodynamic
stability of some two-scale mesophases. The present work aims at exploring the possibilities
of the existence of such mesophases in an incompressible melt of nonperiodic macromolecules
of a monodisperse block copolymer with the architecture depicted in fig. 1. That is why we,
contrary to the authors of papers [12, 13], will be particularly concerned with the region of
the values of parameters m and n, lying in the vicinity of the DSP line (fig. 2).

In the context of the WSL theory, the Landau free-energy functional looks in the momen-
tum representation as follows [7]:

F =
4∑

l=2

1
l!

∑
{qi}

Γ̃(l) (q1, . . . , ql) δK




l∑
j=1

qj




l∏
s=1

ψ̃(qs), (1)

where δK(q) is the Kronecker delta and ψ̃(q) represents the Fourier transform of the order
parameter ψ(r). Vertex functions Γ̃(3) and Γ̃(4) are controlled exclusively by the parameters of
the chemical structure of a macromolecule, whereas Γ̃(2)(q) = S−1(q)−2χ depends additionally
on temperature through the Flory parameter χ [7]. By virtue of the architecture symmetry
of the macromolecules under consideration, the function Γ̃(3) vanishes identically at all values
of its arguments. Hence, the disorder-order transition occurring on the spinodal is always a
second-order phase transition [8]. Only such phase transitions were predicted earlier [12, 13]
for the macromolecules depicted in fig. 1.

Minimizing functional (1), it is possible to find the Fourier transforms of the equilibrium
densities of monomeric units of different types. This, particularly, provides a possibility to
specify the spatial symmetry group of an equilibrium mesophase. When constructing a phase
diagram, the consideration is usually restricted to a set of several candidate mesophases choos-
ing the one which possesses the minimal value of the free energy.

In the vicinity of the DSP line (fig. 2), it is natural to introduce a two-component order
parameter which in the first-harmonic approximation will read [16,17]

ψ̃(q)=
A√
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[
eiϕj1 δK

(
q − q

(L)
j1

)
+ e−iϕj1 δK

(
q + q

(L)
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+
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k
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eiϕj2 δK

(
q − q

(S)
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)
+ e−iϕj2 δK
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q + q

(S)
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)]
.

(2)

The summation in the first and the second sums in the right-hand part of this expression is
up to k1 and k2 = k − k1 values of subscripts of wave vectors {q(L)

j1
} and {q(S)

j2
} of the first

harmonic set [16] of the mesophase under consideration. The values of moduli qL and qS of
the above-mentioned vectors are determined by minimization of the amplitude expansion of
the Landau free energy

F = ν1τ1A
2 + ν2τ2B

2 + β1A
4 + βAA3B + 2β12A

2B2 + βBAB3 + β2B
4 (3)
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Fig. 3 – Morphology diagrams for a melt of the block copolymer schematically depicted in fig. 1 at
n = 15 (a) and n = 50 (b). Firm and dashed curves correspond to the first and the second phase
transitions’ lines, respectively. The two-scale BCT mesophase is stable in the shaded region only.
The coordinates of the point O in (a) and (b) are equal to (2.96, 6.12) (a) and (4.60, 6.16) (b). The
slopes of the firm lines are equal to 0.56, 0.99 (a) and 0.60, 1.05 (b), while the slopes of the dashed
lines are equal to −5.00,−0.73 (a) and −5.65,−0.80 (b).

obtained by means of the substitution of expression (2) into formula (1). Here the following
designations are employed:

τα = (χα − χ) d, 2χαd = S−1(qα), να = k /kα (α = L,S) . (4)

The absence of cubic terms in expansion (3) is due to the architecture symmetry of the
macromolecules, while the terms proportional to A3B and AB3 are present only under the
description of the deformed FCCs with r = 1, 4 [16] among all candidate mesophases consid-
ered in this paper. We calculated their free energy with allowance for the above-mentioned
additional terms. At fixed values of the chemical structure parameters m and n, the values
of the coefficients β1, β2, β12, βA, βB for a given mesophase are functions of values qL and
qS only. The values of these latter near the DSP line will just slightly differ from q∗L and q∗S,
respectively, at which the function S(q) attains its maximum. This difference will be the less,
the closer point (m,n) is to the DSP line where equalities qL = q∗L and qS = q∗S hold exactly.

Having considered all two-scale mesophases among those which are characterized by the
two-component order parameter (2) [16], we constructed in the vicinity of the DSP line the
morphology diagrams presented in fig. 3. It should be emphasized that since m, unlike the
temperature (i.e., parameter χ), is not a thermodynamic parameter, these diagrams are not,
strictly speaking, true phase diagrams [18]. These latter are obtained from a morphology
diagram as its one-dimensional cross-sections at fixed values of parameter m.

As is clear from the diagram in fig. 3a, four lines of phase transitions spring from point O.
The vertical line passing through point O represents the phase diagram of a system with pa-
rameters m and n situated on the DSP line. Analogous lines for values m < 2.96 and m > 2.96
represent phase diagrams of systems whose parameters lie in the vicinity of the DSP line in
fig. 2, below and above it, respectively. Systems of the first type only undergo a phase transi-
tion from the Disordered state into a lamellar mesophase (LAM-S) with small period ∼ 1 /q∗S .
Qualitatively different is the appearance of the phase diagram of the second type system, where
the primary phase transition on the spinodal will be followed at decreasing temperature by two
secondary first-order transitions. The first of these goes from a BCC mesophase (BCC-L) with
large period ∼ 1 /q∗L into a two-scale Body-Centered Tetragonal (BCT) mesophase, whereas
the second transition transforms this BCT mesophase into a LAM-S mesophase.
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Fig. 4 – Positions of maxima (open circles) and minima (full circles) of the order parameter ψ(r) in
the Bravais cell of the BCT mesophase. On every thin line connecting two maxima or two minima
the saddle point of this function is located.

The spatial symmetry of the periodic function ψ(r) of an arbitrary mesophase can be
unambiguously characterized by specifying the location of its extremal points in the three-
dimensional Euclidean space. Following this idea the spatial configuration of field ψ(r) de-
scribing BCT mesophase is illustrated in fig. 4. The positions of maxima and minima of this
field form a parallelepiped and a deformed octahedron, respectively.

Essentially, a secondary transition in melts of architecturally symmetric block copolymers
is in principle impossible to predict in the framework of the WSL theory with one-component
order parameter [8]. The secondary transitions revealed by us result not only in the change of
the spatial symmetry of the mesophases but also in a discontinuous change at the transition
point of the scales of their space periodicity. This is just the matter of the fundamental
distinction of these secondary transitions from those proceeding in all non-symmetric block
copolymer systems examined earlier (see, for instance, [9, 13]) in the course of which the
period of mesophases remains the same. Noteworthy, a change in the period of a mesophase
for decreasing temperature takes place also in melts of polydisperse multiblock copolymers
described by the WSL theory with one-component order parameter [19–21]. However, in such
systems this change proceeds continuously.

Inspection of fig. 3a shows that the ratio κ of the intervals of values χ, corresponding to
the existence of BCT and BCC-L mesophases, is relatively small and equal to 0.08. This
means that with a slight temperature change it is possible to realize a switch of the phase
state from BCC-L to LAM-S mesophase, whose periods differ by a factor of 3.25. Increasing
the number of small blocks n, one can make the difference between the periods of switched
mesophases considerably more pronounced. For example, for n = 50 (fig. 3b) this ratio equals
7.36, whereas the κ value turns out to be equal to 0.07.

Morphology diagrams, presented in fig. 3 are built with allowance for three assumptions
whose validity was verified by us:

1) Amplitudes A and B of the components of the order parameter (2) should be small
enough. In our case, the highest possible values of these amplitudes do not exceed 0.02.

2) Absence of the contributions from the second harmonics into the Landau free energy.
This property has been proved by us for LAM-S and BCC-L mesophases for all points
of the morphology diagrams, depicted in fig. 3. It can be expected that the above-
mentioned property remains true for the BCT mesophase as well.
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3) Smallness of quantities δqα = |qα − q∗α| /q∗α , ensuring the fairness of the employment of
values qα instead of q∗α when finding the periods of the two-scale mesophases at hand.
The highest values of these quantities do not exceed one per cent at all points in fig. 3.

Therefore, in this work the possibility of the existence of two-scale mesophase in a melt
of nonperiodic multiblock copolymer has been established for the first time. Besides, the
conditions have been predicted under which varying the temperature within narrow limits,
one may induce a pronounced change in the period of a mesophase. It can be expected that
such a discontinuous switch will be of considerable practical consequence.
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