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Abstract – The frictional forces in sheared fermionic gas are investigated. The gas is sheared
by two sliding surfaces. Except for a small imperfection (bulge) on one of them, the surfaces are
totally smooth. We show that when the bulge is extremely small, and the gas is also confined in
the lateral dimension, the frictional force (F ) is quantized. That is, F = µF v, where v is the sliding
velocity with respect to the lubricant gas, µF ≡ 2mn2ch is the friction coefficient, h is the Planck
constant and m is an integer. It is also shown that the coefficient nc depends only on the bulge’s
properties (it does not depend on either the gas properties or the sliding velocity).
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Introduction. – Recent developments in micro-
electromechanical systems have raised practical interest
in research involving quantum friction [1–13]. However,
the investigation of quantum friction has revealed some
surprising fundamental effects. For example, two smooth
dielectric surfaces moving laterally (parallel to one
another) experience frictional forces as if the vacuum
between them were a viscous fluid [14–16]. Therefore, fric-
tion measurements can contain a great deal of information
on the nature of vacuum fluctuations. Sliding surfaces,
however, are seldom smooth; in fact, they are usually
rough and corrugated. The most common remedy for
such roughness is, of course, lubrication, and in modern
micro-machinery, the lubricants are usually gases [17,18].
Also, the possibility of confining a fermionic gas in space
with a laser beam has been shown experimentally (see,
for example, refs. [19,20]).
In this paper, we investigate the onset of frictional

forces between two adjacent surfaces. The two surfaces are
sliding against one another at zero temperature, whilst
the shearing is lubricated by a fermion (say, atoms or
electrons) gas. On one of the surfaces there is a small
bulge. The collisions between the particles and the bulge
create the frictional force. The main argument of (and
motivation for) this paper is the following: a small fraction
from each of the transversal modes is reflected from
the bulge. The modes, which are propagating against
the bulge, are reflected from it with a slightly higher
energy. When the sliding velocity is low (in comparison
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to the Fermi velocity), the energy increase is proportional
to the particles’ momentum, and therefore, the power
activated upon the bulge is proportional to p2R (p is the
momentum and R is the modes’ reflectivity coefficient–
see a detailed discussion further on). Now, since for a very
weak protrusion R∼ p−2 (probably the simplest one is the
delta-function potential. See also refs. [22], and eq. (9)),
one can conjecture that each mode makes exactly the same
contribution to the frictional force, which therefore should
be quantized. In this paper, we show that for a very weak
protrusion (the bulge), this is indeed the case.

The system’s description. – Imagine a lubricating
fermionic gas confined between two infinitely long surfaces
at zero temperature (they are infinitely long in the
x-direction and have a finite width in the z-direction, see
fig. 1). The fermionic gas is thus confined to a rectangular
cross section, whose width corresponds to the surfaces’
width (w) and whose height is equal to the distance
between them (d in the y-direction). In the following, we
discuss only very close surfaces, i.e., d�w. On one of the
surfaces, say the upper one, there is a small protrusion
(bulge or bump, for example, see fig. 1). For simplicity,
it is assumed that the protrusion has no features in the
transverse direction, i.e., it is independent of z, and thus
can be fully characterized by its cross section in the
x-y plane. Since in most cases the friction depends very
strongly on the size of the bulge (when the bulge is a
small impurity the force is proportional to the fourth
power of the size of the bulge [21]), even if there are many
bulges, the largest one will have the dominant effect on
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Fig. 1: An illustration of the two. On the upper (sliding) surface
there is a small bulge, which is magnified in the inset. The
fermionic gas is confined between the two surfaces.

the friction, and the rest can be ignored (therefore, it
does not really matter whether the bulge is microscopic
or macroscopic). It is also assumed, for simplicity, that
the lower surface has an infinite mass so that it is always
at rest with respect to the gas. Therefore, when the two
surfaces slide against each other, with a relative velocity v
(i.e., the bulge slides with a velocity v with respect to the
lubricant gas), the protrusion’s resistance to the sliding
is manifested by a frictional force. If not for the bulge,
the shearing process would not influence the lubricant.
Classically, the particles of the lubricant gas, which are
bouncing back and forth in their confinement zone prevent
the bulge from sliding smoothly through the lubricant.
In many respects this system is related to the the

surface conductivity of refs. [12], however, in this paper
we do not use the semiclassical treatment, but instead
solve the problem in the quantum regime. The Schrödinger
equation, which describes the dynamics of the confined
lubricant, reads

− �
2

2m0
∇2ψ+ [Vsu(y)+Vco(z)+Vpr(x, y)]ψ= i�∂ψ

∂t
, (1)

where Vsu(y) is the potential of the surfaces,

Vco(z)≡
{
0, 0 � z � w,
∞, otherwise,

is the confinement potential in the z-direction and
Vpr(x, y) is the potential of the protrusion, which satisfies
Vpr→ 0 for |x| →∞; note that it does not depend on z.
In the following discussion, we assume zero temperature,

and a very sparse lubricant (very low density), i.e., the
density per unit length (n) satisfies n� d−1. Therefore,
only the first transversal mode (which is related to the
coordinate y) is occupied. In the z-direction, however,
many modes can survive, which will be identified by their
quantum number j. For any given energy E = �ω and

a given channel j, the quantum wave function of the
lubricant particles can be written:

ψ±j,ω = sin(πy/d) sin(πzj/w) exp(±ikjx− iωt), (2)

where the longitudinal wave number kj satisfies: 0� kj �
kjF , when

(
kjF

)2
≡ 2m0EF /�2− (π/d)2− (πj/w)2, m0 is

the lubricant gas particles’ mass; j is an integer that
characterizes the transversal mode, EF is the Fermi energy
and the upper (lower) sign in eq. (2) refers to particles
which propagate from the left (right) side of the bulge to
its right (left) side.
In order to solve this problem, it is very convenient

to choose a frame of reference in which the bulge is at
rest. Consequently, the bulge “sees” (in the new frame
of reference) on its right, particles emerging with the
wave numbers 0� kr � kjF +m0v/�, for every channel j,
while on its left the incoming particles have, for the
same channel, the wave numbers: 0� kl � kjF −m0v/�
(see fig. 2).
It should be stressed that since the gas is not confined

in the x-direction, it can be regarded as if it is connected
to two infinite reservoirs. Therefore, the bulge is always in
motion relative to the gas. In the moving frame of reference
we will always see the picture of fig. 2. This reasoning is
very similar to the one taken in conductance calculations
(on the connection between friction and conductance, see,
for example, [12] and [13] and references therein).
In the following we discuss only very low sliding veloc-

ities, i.e., m0v/�� kjF , which means that the particles’

maximum energy on the right is higher by ∆εj ∼= 2kjF v�
(in the moving frame) than the particles’ maximum energy
on the left.
Clearly, in the first approximation, only the particles

that propagate from the right (to the left) with momentum
kjF −m0v/�� kr � kjF +m0v/� contribute to the energy
wasted by friction.
Let us denote by Tj ≡ T (k= kjF ) the quantum transmis-

sion (for transport in the x-direction) through the bulge
via the j-th channel. It should be pointed out here that the
geometry prevents mode mixing. The reflected current of
the j-th channel (note that here we are regarding a parti-
cle’s current and not a charge current) from the bulge,
which includes only the particles with kr � kjF −mv/�, is
equal to

Ij =∆εj(1−Tj)/�. (3)

Each of the reflected particles gains an energy quantum
2∆εj , and therefore the power imposed upon the bulge is

P = 2
∑
j

∆ε2j (1−Tj)/�. (4)

Therefore, the power produced during the shearing
process maintains the relation P = 4

π
v2�
∑
j(k
j
F )
2(1−Tj).

Finally, the friction force reads

F = P/v= µF v, (5)
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Fig. 2: At the moving frame (where the bulge is at rest), the
particles on both sides of the bulge can be regarded as hitting
it with slightly different momenta (for the j-th mode in the
figure), ∆k≡m0v/�.

where the friction coefficient is

µF ≡ 2h
∑
j

n2j (1−Tj) (6)

and nj ≡ (2/π)kjF is the particles’ density per unit length
of the jth channel (the prefix 2 comes from the spin
degeneracy).
Equation (5) suggests a linear relationship between the

frictional force and the shearing velocity. Notice that Tj
is also a function of the lubricant density, since it is a
function of the Fermi wave number. On the other hand,
the transmission coefficient T has no dependence on the
lubricant’s characteristics other than its density, but it is
highly sensitive to the bulge’s properties, and therefore
no general relation can be obtained. However, a general
conclusion that does arise from eq. (6) is that

µF � µmaxF ≡ 2h
∑
j

n2j (7)

regardless of the bulge’s characteristics or dimensions.
Moreover, this result even holds true for an arbitrary
number of protrusions, and thus can be applied to any
rough surface. For any number of channels, eq. (7)
can be evaluated (by calculating the sum in 7) as

µmaxF = 2h
[(
q2− 4

d2

)
m− 2

w2
m(m+1)(2m+1)

3

]
, where q2 ≡

(2m0EF /�
2)(4/π2) and m, which is the integral part of

w(q2/4− 1/d2)1/2, is the number of channels (note the
difference between the number of channels m and the
lubricant particles’ mass m0). When m→∞, i.e., w→∞,
it can be approximated by (simply by taking the limit)

µmaxF

w
=
2

3
h
(
q2− 4/d2)3/2 . (8)

When the onset of friction is being considered the exact
nature of the protrusion is very important. Of course, the
transmission T cannot have a general expression; however,
in a wide range of thin and small bulges (or bumps), the
transmission can be expressed by [21]

Tj ∼=
(
1+ (nc/nj)

2
)−1

, (9)

where nc is a transition density, which characterizes the
bulge. If the problem was a one-dimensional one, and
the protrusion was a delta-function, then the approx-
imation sign “∼=” would be replaced by the equality
sign “=”. Nevertheless, if the protrusion is a very small
bulge, this expression can be applied with great accuracy,
even to problems with more than a single dimension
(see refs. [21,22]).
If, for example, the protrusion is a very shallow but

long bulge, then nc ∼L−1, where L is the bulge’s length.
If the bulge is a point impurity (in the x-y plane and
independent of z), then [22]

nc = 4π
2(ε2/d3) ln−1(ρ0/εC), (10)

where ε is the distance from the surface and ρ0 is a length
parameter, which is proportional to the resonance wave-
length of the impurity and is related to the eigen-energy
(E0) of the impurity by E0 = 8(�/ρ0)

2m−10 exp(−γ), γ ∼=
0.577 is the Euler constant and C ∼= 5 is a numerical
constant (see refs. [21,22]). In any case, eq. (6) should read
(by substituting eq. (9) in eq. (6))

µF = 2hn
2
c

∑
j

1

1+ (nc/nj)2
. (11)

For very sparse lubricant (nj� nc for every channel j),
the friction coefficient expectedly vanishes and the expres-
sion in eq. (7) is regained: µF = 2h

∑
j n
2
j .

More important is the case of a point protrusion, that
is ε→ 0, or nc� n. This regime is important not only
because it investigates the onset of friction due to a
minuscule defect (bulge), but also because it even applies
to relatively high densities (so long as the distance between
the surfaces is small enough, i.e., nj� d−1 for every j), in
which case the interaction between the particles (if there
is any) can be neglected.
The friction coefficient (eq. 11) as a function of the

Fermi wave number k0F ≡
√
2m0EF /�2−π2/d2 (see defin-

ition in eq. (2) is presented in fig. 3 for a specific nc. µF
is measured in units of 2hn2c and k

0
F is measured in units

of π/w. The plot exhibits a staircase pattern and reveals
the quantization of the friction coefficient µF , where the
friction coefficient quantum is 2hn2c . This quantity does
not depend on either the lubricant’s properties or its
density. It depends only on properties of the bulge and
the distance between the surfaces.
When nc→ 0, the staircase pattern is more sharply

delineated, and eq. (11) can be written

µF = 2mn
2
ch, (12)
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Fig. 3: A plot of the friction coefficient (µF ) for the case
nc = 0.1/w as a function of the normalized Fermi wave number
(k0F ≡

√
2m0E/�2−π2/d2). µF is measured in units of 2hn2c

and k0F is measured in units of π/w. This plot manifests the
quantization of the friction coefficient.

where m is the total number of propagating channels.
This is the main result of this paper, which manifests
the quantization of quantum friction for extremely weak
protrusions. Each mode has exactly the same contribution
to the friction force: δF = 2n2chv.
It is clear from the coefficient that this is a quantum

effect, which disappears for classical particles. Moreover,
if the particles were bosons, they would all accumulate at
the lowest energy state (at T = 0) and the quantization
would disappear.

Numerical evaluation and possible implementa-
tion. – If the bulge is a point protrusion (in the x-y
plane), whose eigenenergy [21,22] is approximately equal
to E0 = (h/ε)

2/m0 and, for example, d∼ 1nm, ε/d∼ 0.3
and v= 1m/s, then eq. (10) can be used and the friction
quanta δF (i.e., the force is F =mδF ) can be larger than
δF > 10−13N– a small but measurable quantity [4,5].
Note that the friction quantum is independent (in the

high-density regime) of the gas properties. Therefore,
when the density increases, the force increases with it but
not its quanta.
To enlarge δF , one can use more bulges1 or more paral-

lel channels (see fig. 4). Since the gas is confined only to
the laser beam, it is possible to use many parallel beams,
each of which makes the same contribution to the force
(note that δF is independent of w). That is, the beam
confines the gas only in the z-direction (clearly, in the
y-direction the surfaces are responsible for the confine-
ment).

1The number of bulges should not be too large, since if the
distance from the first bulge to the last one is larger than the
reciprocal of kF , eq. (9) is invalid.

Confining 
beams w 

Fig. 4: The gas is confined by laser beams. Each beam makes
the same contribution to the friction force. The beams in this
case are polarized in the y-direction. The black dots represent
the confined atoms (fermions).

Summary. – The frictional force which emerges in a
lubricant fermionic gas due to shearing was investigated.
The discussion focused on the onset of the frictional force.
It was shown that when the smoothness of one of the
sliding surfaces is damaged by a single small imperfection,
the frictional force is proportional to the sliding velocity,
i.e., F = µF v, where the friction coefficient is quantized
µF = 2mn

2
ch (m is an integer). The friction coefficient

quantum δµF = 2n
2
ch depends only on the geometry, i.e.,

on the bulge and on the distance between the surfaces; it
does not depend on either the lubricant gas properties or
the sliding velocity.
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