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on surfaces

Abstract – We study the ground state ordering and interactions between two two-dimensional
Wigner crystals on neutralizing charged plates by means of computer simulation. We consider
crystals formed by i) point-like charges and ii) charged dimers, which mimic the screening of
charged surfaces by elongated multivalent ions such as aspherical globular proteins, charged
dendrimers or short stiff polyelectrolytes. Both systems, with point-like and dimeric ions, display
five distinct crystalline phases on increasing the interlayer distance. In addition to alteration
of translational ordering within the bilayer, the phase transitions in the dimeric system are
characterized by alteration of orientational ordering of the ions.
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The interaction between electric double layers attracted
much attention in the past twenty years in particular
due to the rediscovered role of ionic correlations. It has
been known for long time that two similarly and strongly
charged plates can attract each other in the presence
of multivalent counterions. This has been seen in Monte
Carlo simulations [1–3], observed experimentally with the
surface force apparatus [4], deduced from the scattering
experiments on laponite dispersions [5], phase diagrams
of charged lamellar systems [6,7], clay platelets, etc.
(see [8–10] for a review).
As the attraction appears on increasing counterion

correlations, the phenomenon can be conveniently char-
acterized by an electrostatic coupling parameter Ξ=
2q3l2Bσs, which depends on the Bjerrum length lB , the
counterion valency q, and the surface charge density σs.
Several successful descriptions of the attraction have been
built for the strong coupling limit Ξ→∞, where the corre-
lations are so strong that the ions form a Wigner crystal
(WC) [11] or at least a strongly correlated liquid (SCL) at
the charged colloid surface [12,13].
Although the phase diagram of a bilayer Wigner crys-

tal has been known for some time both at the ground
state and at finite temperature [14–18], the interaction
between the crystalline double layers as a function of
their separation has not been discussed in detail. The
mono- and bilayer Wigner crystal structures have been

addressed in the literature in relation to electrons above
the surface of liquid helium, two-dimensional semicon-
ductor heterostructures, Mott insulators, dusty plasmas,
laser-beam-cooled trapped-ion plasmas, or dislocation-
mediated melting transitions [19,20]. In contrast, in the
soft-matter and biological literature the crystal structure
is typically regarded as an auxiliary question for evaluat-
ing the interactions between the surfaces that host these
Wigner crystals [21–23]. Typically, only the staggered
hexagonal crystal, which wins at large distances, is consid-
ered. A few recent publications discuss interaction effects
such as plasmon oscillations using perturbation schemes
with respect to the ground state of the double layers at
large distances (the staggered hexagonal phase) [21,22].
A characteristic feature that differentiates Wigner crys-

tals in soft matter systems from the low-temperature
electronic ones stems from the nature of the ions: The
ions have to be multivalent to be well ordered in aque-
ous dispersions. The high ion valency also implies that
the Coulomb contribution dominates the free energy and
in-layer thermal fluctuations are negligible. A situation
close to the low-temperature behaviour can be obtained,
for example, when polyelectrolyte molecules, globular
proteins or charged dendrimers play the role of counte-
rions [24–26]. In the general case, such ions are neither
point-like nor spherical and their shape might influence
the interaction between the bilayers. For example, in the
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Fig. 1: Top and side view of three 2D configurations of
counterions on two parallel charged plates. The open and filled
symbols designate the ions located on the opposite surfaces.
Set I corresponds to a single hexagonal lattice, set III to a
superposition of two square lattices, and set V corresponds to
two staggered hexagonal lattices (the notation is explained in
the text).

limit of very long ions (DNA chains between lipid bilay-
ers) their anisotropy leads to orientational ordering and
formation of two-dimensional smectic phases [27,28]. In
this work, we present an accurate numerical solution of the
ground state problem both for point-like (spherical) and
small but elongated (non-spherical) counterions. We first
address the interaction between the bilayers with point-
like ions and then use it as a reference system to study
the effect of ion size and charge distribution on the bilayer
interaction.
We envision a situation where the interaction energy

for two flat parallel Wigner crystals on a neutralizing
background is measured as a function of the interlayer
distance. For point-like ions the scenario includes two
obvious limiting cases: at large separations, the crystals
do not feel any discreteness of each other so that each of
them has a 2D plane-filling hexagonal symmetry. At the
smallest separation between them, where both of them lie
in the same plane, a single hexagonal crystal is formed.
At a finer resolution, the transition between these two
phases gives rise to the following sequence of structures on
increasing the interlayer distance: a monolayer hexagonal
lattice (I), a staggered rectangular lattice (II), a staggered
square lattice (III), a staggered rhombic lattice (IV), and a
staggered hexagonal lattice (V) [14]. Here, we evaluate the
ground state interaction by minimizing the energy at each
gap width and in addition, consider three particular phases
in more detail. Namely, we consider three setups, for which
the positions of ions on one plane fall in the geometrical
centres of the primitive cells of the identical lattice on
the other plane: the hexagonal monolayer structure (I);
staggered square lattice (III); and staggered hexagonal
lattice (V). These three configurations are shown in fig. 1.
They represent the three rigid lattices on the bilayer
phase diagram, meaning that their structure does not
change within their region of stability. The intermediate
structures (II and IV) are “soft”, so that the aspect
ratio of their primary cell is varying with the interlayer
distance [14]. Finally, to study the effect of the ion shape

we replace each ion by a dimer consisting of two identical
charges connected by a stiff spring. The dimer is allowed
to rotate and translate in plane and two different spring
lengths are studied.
The energy of a Wigner crystal on a neutralizing

charged plane can be written as

U1 =

N−1∑

j=1

N∑

k=j+1

q2

ε |rj − rk| +
N∑

j=1

2πqjσsR

ε
, (1)

where σs is the surface charge density of the plate, q the
counterion charge, N the number of counterions, ε the
dielectric permittivity of the medium, and R the ion-plate
contact distance, or the ion radius for hard sphere ions.
The characteristic lengthscale of the Wigner crystal on
a neutralizing background is the mean lateral distance
between the ions a⊥, which is defined by π (a⊥/2)

2
=

q/σs. The energies can be conveniently expressed in terms
of the average ion-ion Coulomb energy q2/(εa⊥) : Ũ =
Uεa⊥/q2 = 4Uε/(πa⊥qσs). In this rescaled form, the result
would explicitly depend on neither ion valency nor the
surface charge density. If we also suppose that the ions
form a perfect crystal so that each ion has exactly the
same environment, one summation over all ions can be
performed right away. Thus, we get for the energy per ion

Ũ1

N
= a⊥

N∑

j=2

1

|rj − r1| −
8R

a⊥
. (2)

For two such plates, in case they are parallel to
each other and have identical ion configurations, the
total energy will contain the self-energy, 2U1, plus the
interaction terms: ions – opposite plate and plate–plate.
The ion–plate and plate–plate energies in the case of
charge neutrality will compensate each other as the sum
of distances from each ion of charge q to the two plates
is always h+2R, which is exactly equal to the distance
between the corresponding surface element of the same
net charge and the opposite plate. Then the only inter-
esting contribution comes from the summation over
the ions

Ũ12(h)

N
= a⊥

N∑

j=2

1

|rj − r1|

+ a⊥
N∑

k=1

1√
(rk − (r1+a))2+(h+2R)2

, (3)

where h the distance between the ion-containing planes,
thus giving the distance between the plates h+2R, and
a the displacement vector of the lattice on one plate with
respect to the other one. The indices j and k now mean
a summation over the ions on different plates. As the
interlayer interaction leads to structural transformation
within the layer, these two terms remain interconnected
and should always be considered simultaneously. For infi-
nite plates, the total Coulomb energy has to be calcu-
lated numerically. We modeled a piece of 2D crystal of
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Fig. 2: Rescaled potential energy per ion of two parallel
Wigner crystals on oppositely charged plates as a function of
normalized distance h/a⊥ between the crystals for the three
different counterion arrangements. The optimized structure
is obtained by the energy minimization using a Brownian
dynamics simulation at zero temperature. The transition points
as reported in ref. [14] are marked by filled circles. The regions
of stability of various crystalline structures are delimited by
the circles and marked next to the optimized energy curve.

size 40× 40 to 80× 80 ions with lateral periodic bound-
ary conditions, and calculated the energies with relative
uncertainty of 10−6. The plates were supposed to be homo-
geneously charged. An MMM2D summation scheme [29]
and an MD simulation package ESPResSo v. 1.9 were
used [30].
We first consider the relative energies of the preformed

lattices. Figure 2 shows the potential energy of interaction
between the two layers as a function of the gap width h for
the three setups. The total energy, U = 2U1+U12, in all of
them is strongly negative and decreases in absolute value
with the gap width. The limiting value at h→∞ on each
curve corresponds to twice the energy of a single Wigner
crystal U1. To calculate the true ground state energy we
perform molecular dynamics simulation of two ionic layers
with the ions constrained to their corresponding planes
but allowed to move within the plane. For each interlayer
distance we start simulation from each of the three
preformed lattices and then record the minimal energy. We
see that the minimal energy from the free configuration
coincides with energy of the favorable arrangement in
the appropriate range of distances and gets lower in two
intermediate regions close to the transition points I →
III and III → V (fig. 2). In these regions, one should
expect an appearance of the staggered rectangular lattice
and the staggered rhombic one, respectively. At h= 0 we
obtain the rescaled energy per ion Ũ12 =−3.47502, which
is close to value −3.47493 reported in ref. [14] (the scaling
factor in our work differs from ref. [14] by

√
π). The

single hexagonal lattice is stable in a very small region
close to h/a⊥ = 0. The location of the further transition
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Fig. 3: a) Absolute value of rescaled attraction energy and force
between two charged plates with crystalline arrangement of
point-like ions. The dashed line shows the predicted asymptotic
behaviour at large h/a⊥ [14]. b) The rescaled interaction energy
between two parallel Wigner crystals formed by charged dimers
of the indicated length in comparison with that for point-like
ions. The dimer charge as well as the number density match
those for the system with point-like ions.

points can be estimated from comparing the energies of
the corresponding phases. The intersection point of the
curves I and III in fig. 2 corresponds to a transition
into staggered square phase. The energy of the optimized
structure becomes lower than that of the phase III at
h/a⊥ ≈ 0.55, which indicates a transition into phase IV.
The structure V prevails at h/a⊥ � 0.77. We note that
the transition in our work is observed at a higher h/a⊥
than it was reported in [14,18]. The interaction energy
of the two layers is shown in fig. 3a. The energy curve
is smooth between the transition points. The force curve
shows a jump at h/a⊥ ≈ 0.77, which is expected due to
discontinuous character of the transition between phases
IV and V [14]. The initial decay of the interaction energy is
close to linear, while the asymptotic behaviour at h/a⊥ > 1
is clearly exponential. The observed behaviour is close to
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Fig. 4: (Color online) Snapshots from simulations of dimeric
bilayers with dimer length L= 0.34a⊥ at different gap widths:
h/a⊥ = 0.1 (a), 0.33(b), 0.5 (c), 0.75 (d), 1.2 (e). The different
colors correspond to ions located at different planes.

the asymptotic decay expected at large distances U12(h)∝
exp(−h/(a⊥/2π)) [12,14] (see fig. 2).
We now look at the interaction between crystals formed

by Coulombic dimers for two different lateral ion sizes
L= 0.5R= 0.17a⊥ and L=R= 0.34a⊥. As an additional
degree of freedom is involved, we expect a richer phase
behaviour in this case. In the limit L= 0 the behaviour
of the system with point-like ions is recovered. Figure 3b
presents the interaction energies as a function of the gap
width. Simulation snapshots for five different values of
h/a⊥ = 0.1, 0.33, 0.5, 0.75 and 1.2, which correspond to
different crystalline structures, are presented in fig. 4.
We see that at small and large relative distances the
dimers in the two layers tend to be aligned while at the
intermediate separations the dimers in each layer tend to
orient perpendicular to their nearest neighbors in the 2D
projection of the lattice (either same plane neighbors or
the neighbors in the opposite plane).
A variation of the dimer length affects only the ion-

ion part of the total energy of the bilayer. A system
with longer dimers has a higher self-energy of each layer
while the corresponding interlayer part depresses the
interaction. We see from fig. 3b that the interaction
between the layers indeed becomes weaker on increasing
the dimer length. Roughly, the characteristic length a⊥
decreases by L/2 as compared to the point charges.
Then, the interaction energy would decay as U(h)∝
exp(2πh/(a⊥+L/2)). A fit to the calculated interaction
energies reveals the decay length change from 0.19a⊥ for
the point-like ions to 0.15a⊥ for the system with L= 1 (or
0.34a⊥). Ultimately, at L= a⊥ at small separations one
should recover the bilayer with a′⊥ = a⊥/

√
2.

In simulations with short dimers with L= 0.17a⊥ at
various gap thicknesses we observe: i) 0<h/a⊥ < 0.27
staggered parallelogrammetic lattice, parallel orienta-
tion of neighboring dimers, soft; ii) 0.27<h/a⊥ < 0.8
staggered square lattice, perpendicular dimer orientation,
rigid; iii) 0.8<h/a⊥ staggered rhombic lattice, parallel

dimer orientation, rigid. At L= 0.34a⊥, we have the
following sequence of structures: i) 0<h/a⊥ < 0.17 stag-
gered rectangular lattice, parallel orientation of neighbor-
ing dimers, rigid, the longer lattice constant a2 is roughly
a1+L (fig. 4a); ii) 0.17<h/a⊥ < 0.40 we observe domains
of rhombic lattice, rotated with respect to the neighbour-
ing domains (fig. 4b); iii) 0.40<h/a⊥ < 0.67 staggered
square lattice, perpendicular dimer orientation, rigid
(fig. 4c); iv) 0.67<h/a⊥ < 0.91 staggered parallelogram-
metic lattice, parallel dimer orientation, rigid (fig. 4d);
v) 0.91<h/a⊥ staggered triangular (a honeycomb-like)
lattice, parallel, rigid (fig. 4e). We note that in contrast
with some phases of point ions (the “soft” rectangular
(II) and rhombic (IV) phases), the observed lattices in
the system with long dimers (L= 0.34a⊥) are rigid, i.e.
the aspect ratio of the primitive cell stays constant within
the region of stability of the corresponding lattice.
The most interesting observation for the dimeric

systems is related to the ability of dimers to adjust
the orientation to minimize the electrostatic energy.
The effect is strongest for the square lattices where
we find perpendicular orientation of the neighboring
dimers. A similar phenomenon of altering orientational
ordering was discussed recently for a one-dimensional
stack of rod-like ions [31]. In contrast to our observa-
tion for 2D layers, the ground state in a staggered 1D
system is represented by perpendicular orientation of
the neighboring ions, which then changes to a twisted
chiral phase on increasing density. In our system, the
reorientation of the ions happens suddenly on varying the
separation distance between the surfaces, which might
find an application in nano-structuring. This structural
transformation can be best characterized by the scalar
order parameter S = 12 〈3 cos2 θ− 1〉 (the second moment
of the orientational distribution function), where θ is the
angle between the molecule orientation and the director,
and average over all dimers is taken. This value is plotted
in fig. 5. One can see that the phases at short and long
interlayer distances have S = 1, which corresponds to
ideally aligned dimers (figs. 4a,d,e). Further on, the S
values of 0.25 correspond to a coexistence of two preferred
dimer orientations (fig. 4c), which are perpendicular
to each other. The arrangements with two preferred
orientations are observed in the region of stability of the
square lattice. From the plot shown in fig. 5, we see that
the onset of the perpendicular dimer orientation as well
as the return into the aligned state happens in the system
with longer dimers at smaller distances.
Finally, we note that the presented sequence of orien-

tational transitions exists also at finite temperatures.
A simulation performed for L/a⊥ = 0.34 at Ξ= 50000
and Ξ= 10000 still showed three regions with high, then
low, and again high order parameter on increasing the
interlayer distance, although the short-distance and the
long-distance phases become less aligned due to thermal
fluctuations. The observed order parameter was S ≈ 0.9
at small interlayer separations, and S ≈ 0.8 (Ξ= 50000)
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Fig. 5: Orientational order parameter for dimeric Wigner bi-
layers with two different dimer sizes. The value S = 1 corre-
sponds to perfectly aligned dimers, S = 0.25 to a coexistence
of two perpendicular dimer orientations or absence of orienta-
tional order. The lines are guide to the eye.

and S ≈ 0.4 (Ξ= 10000) at large separations (fig. 5, trian-
gles), while the values for the perpendicular dimer orien-
tations, S ≈ 0.25, did not change with temperature. One
can expect that the temperature region of stability of the
square lattice with the perpendicular dimer orientation is
larger than that for the aligned phases, which follows from
the increasing stability of the square lattice itself in the
system with point ions [16]. We also note that the bilayer
system is stable with respect to normal fluctuations, which
are suppressed in our setup by the repulsion between
the mobile ions that confines the ions to thin layers at
the walls.
We calculated the ground state interaction energy of two

planar ionic double layers represented by Wigner crystals
of point-like charges or charged dimers, where the latter
model mimics the situation of screening the interaction
between charged surfaces with polyelectrolytes or non-
spherical molecules. The crystalline structure observed
with point-like charges agrees with that reported in the
earlier literature, while novel structures with unusual
orientational ordering were observed in the system with
elongated ions. In all cases we found exponential asymp-
totic decay of the correlation attraction at interlayer
distances larger than the characteristic lateral separation
between the counterions. We found that the elongated ions
produce in general weaker correlation attraction than the
point-like or spherical ions of the same charge.
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