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Abstract – We study the dynamics of granular gases which fragment due to their collisions.
We have developed a kinetic model that accounts for the correlations between grains’ size and
velocity at collisions. We analyze how the fragmentation events taking place at collisions affect
the growth in the number of grains, and also which distribution of grain’ sizes they give rise to.
We describe the effects that the mechanisms which control the fragmentation process have on the
kinetics of the granular mixture, and have characterized the different kinetic regimes they give
rise to, depending on the asymptotic behavior of the fragmentation probability. In these different
scenarios the size and velocity distributions display also distinct features, and hence can be used
to understand the physical processes in fragmenting systems.

Copyright c© EPLA, 2007

Introduction. – Macroscopic objects are known to
fragment when subject to external loads or impacts. In
recent years, the understanding of fragmentation processes
have attracted considerable interest [1–7], due to its
scientifical and technological impact in a wide variety of
situations. Granulate processing [8], particle comminution
[9], collision-induced dissociation reactions [10], shattering
of solid objects [11], and meteorite clouds [12] constitute
relevant examples where fragmentation appears as a result
of the dynamics of the grains and their interplay with
energy injection.
In granular materials energy is dissipated at collisions

through viscoelastic and plastic deformations; which are
also responsible for grain damaging [13,14]. Collision-
induced fragmentation is an intrinsically non-linear
process because it arises only through grains’ collisions.
In granular gases grains’ sizes and velocities become
correlated at the collisions, and such correlations will
affect which grains are more likely to break. Therefore, the
properties of collision-induced fragmentation will differ
qualitatively from linear fragmentation processes [1,15],
where the properties or state of each object determine
its likelihood to break up, as happens, e.g., on polymer
degradation [8].
Molecular Dynamics simulations of collision-induced

fragmentation [5,6] have been carried out in dense granu-
lar media and have shown that the specific details of how
fragmentation takes place does not significantly affect the
basic features of the fragmentation process and generically

both power law and log-normal fragment size distribu-
tions have been reported [6]. However, since such simu-
lations have been carried out at high packing, they have
focused on the development of force chain networks, their
spatial distribution and its relevance in the efficiency of
comminution, rather than in the kinetics of the fragmen-
tation process or grain mass and size distributions.
Our work generalizes studies performed previously in

which non-linear fragmentation is described in terms
of kinetic equations with simple collision kernels [1,15].
Although for small grains dispersion interactions will
lead to a combined action of coagulation and fragmen-
tation [16], in this letter we will concentrate on the frag-
mentation process and will disregard this second effect to
focus on the relevance that collision-induced fragmenta-
tion has on the kinetics and distributions of a granular gas.
The present approach works at the level of the Boltzmann
equation, disregarding the correlations built as a result
of the collision process1, although we will keep detailed
account of correlations between size and velocity at the
collision events.

Hard-sphere model. – We consider a fluid of D-
dimensional inelastic hard spheres. They interact through
a sequence of binary collisions and lose a fraction of their
relative kinetic energy at each collision, (1−α2)/(2D)
(α is the restitution coefficient, 0<α� 1). We describe
1For elastic systems it becomes exact at high dilution; for inelastic

fluids, one should be restricted to small inelasticities.
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fragmentation as a stochastic process characterized by the
probability that a grain breaks P (L,Ep). It depends on
the grain’s size L and stored energy at the collision Ep.
Extreme statistics [17] is usually used to characterize frag-
mentation, and assumes that the weakest defect in the
particle is responsible for its failure. According to this
approach, we will consider a family of breaking probabili-
ties of the form, P (L,Ep) = 1− exp [−(L/L0)γ(Ep/Ep0)ρ],
where L0 and Ep0 stand for the corresponding character-
istic scales. This general expression includes, as a partic-
ular case (γ =D− 1), the well-known Weibull statistics
[18]. The exponents ρ and γ are restricted to values which
ensure a non-increasing product LγEρp as a function of
time.
This effective description disregards the details of how

energy stored and lost at collisions is related to grain
deformation and fracture [13]. Nonetheless, such simpli-
fied, effective modeling allows us to point out the basic
effects associated to collision-induced fragmentation. For
simplicity’s sake we identify the energy stored at a colli-
sion, Ep, with the maximal potential energy stored by the
grains, and which corresponds to the largest change in
relative kinetic energy during grain collision. At fragmen-
tation we enforce mass conservation and distribute the
mass of the breaking grain uniformly into its offsprings;
for simplicity’s sake we will assume that two grains form
out of the breaking parent.
We will analyze theoretically the kinetics and particle

distribution of a homogeneous fluid of fragmenting grains.
To this end, we will neglect grain correlations; in this case
the dynamic state of the fluid is characterized by the one-
particle distribution function, f(v, σ, t), which depends
on grain’s velocity v and size σ. It obeys a Boltzmann
equation which can be written as

∂f
∂t
=−Lf +Gf +Gbf +Ff, (1)

where the first term Lf accounts for the disappearance of
particles of a given velocity due to the collision process
itself, while Gf accounts for the production of new parti-
cles of a given species and velocity at the collision. These
two terms are the usual gain and loss terms in the
Boltzmann equation; they involve both pre-collision and
post-collision velocities, v∗i and vi, respectively, because
we require that the out-coming velocity of the collision
corresponds to the velocity v. Moreover, it is through
these relations, between post-collision and pre-collision
velocities, that the inelastic character of the collision
enters and intrinsic correlations are generated. The pre-
collision velocities, in terms of the post-collisional ones, are
given by

v∗1,2 = v1,2∓
m2

m1+m2

(
1+α−1

)
[ ε̂ ·v12 ] ε̂, (2)

where m1 and m2 represent the masses of the colliding
particles and v12 = v1−v2 accounts for their relative
velocity. Finally, ε stands for the the unit vector joining the
grains’ center of mass. For a homogeneous system where

the spatial dependence is irrelevant, ε can be understood
as a uniformly distributed unit vector.
The third contribution in eq. (1), Gbf , accounts for

the fragmentation of the colliding grains for a prescribed
fragmentation probability P (L,Ep). This is the only
non-standard term; it ensures mass and momentum
conservation and can be written as

Gbf(v, σ) =
∫
dDg(u)P (σ1, Ep)f(v1, σ1)f(v2, σ2)

×
[
δ(σ−σ1u 1

D )+ δ(σ−σ1(1−u) 1D )
]
, (3)

where g(u) is the probability density that one of the off-
springs carries a fraction u of the parent’s mass and dD≡
dε̂d1d2δ(v−v∗1)σD−112 θ(ε̂ ·v12)|ε̂ ·v12|. Here, d1 = dv1dσ1,
d2 = dv2dσ2 and σ

D−1
12 θ(ε̂ ·v12)|ε̂ ·v12| corresponds to the

collision cross-section with geometric radius σ12 ≡ σ1+
σ2. Moreover, θ is the Heaviside function. The delta
contributions within brackets enforce mass conservation
when the two offsprings are produced. We will analyze
the simplest case where mass is uniformly distributed
(g(u) = 1 with 0� u� 1). Finally, Ff(v, σ, t) represents
the external forcing which injects energy into the system.
Its form depends on the details of energy supply; several
explicit forms are described, e.g., in [19,20]. The increase
in grain number as a result of fragmentation requires an
equivalent increase in the frequency of energy injection to
sustain a steady state. For (Ff(v, σ, t) = 0), we recover a
freely evolving fragmenting granular gas [21].

Kinetics. – The evolution of the hydrodynamic
variables, which correspond to moments of f(v, σ, t),
are derived from the Boltzmann equation. Specifically,
the number of grains, n(t) =

∫
dvdσf(v, σ, t), can be

expressed as
dn

dt
= ω̃n, (4)

where the fragmentation frequency, ω̃, can be written as

ω̃(t) =
1

n

∫
dε̂d1d2σD−112 θ(ε̂ ·v12)|ε̂ ·v12|

×f(v1, σ1, t)f(v2, σ2, t)P (σ1, Ep1). (5)

The evolution equation for the kinetic energy is
Ec = (ρ/2)

∫
dvdσσDv2f(v, σ, t), with ρ the overall

grain density. Therefore, it in turn obeys

dEc
dt
=−bcω(1−α2)Ec+ψ, (6)

where the first term accounts for energy dissipation due
to inelasticity, with bc the dimensionless collisional aver-
age [22] and ω the collision frequency [21,22]. The second
contribution describes the energy input and corresponds
to the last term in eq. (1). Its specific form depends on
energy injection, and ψ= 0 for a freely evolving granular
gas [21]. Subsequently, we discuss results corresponding to
a steady state, where heating and collision frequencies are
proportional to each other, i.e. ψ∼ ω.
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We will concentrate on the late-stage kinetics of the
system, once transient effects from the initial conditions
have vanished, and will assume that a scaling regime is
achieved, consistent with numerical evidence as discussed
below. In this regime, the distribution function reduces
to f(v, σ, t) = n

v̄Dσ̄
f̃(c, σ̄), where we have introduced the

rescaled size and velocity as c= v
v̄
and σ̄= σ

σ̄
, respectively.

A natural choice for size and velocity scales correspond to
v̄2 = 〈v2〉 and σ̄= 〈σ〉, where 〈. . .〉 stands for an instanta-
neous particle average of the appropriate quantity.
Since the number of particles increases, mass conserva-

tion leads to a decrease of the grains’ mean size; in the
scaling regime it implies σ̄∝ n−1/D. In the late stage,
the average velocity of the grains is also constant due to
the thermostat. The latter implies that the total kinetic
energy of the system also remains the same. As a result,
the energy per particle decreases as the inverse of the
number of grains.
We further assume that σ̄γEρp goes asymptotically to

zero, then in the scaling regime the breaking probability

vanishes asymptotically as P (σ̄, Ēp)∝ σ̄γĒρp ∝ n−
Dρ+γ
D .

In this case, once the mean velocity has reached its
asymptotic value (determined by the balance between
the energy input per collision and the energy lost at
every collision), the fragmentation frequency scales as ω̃∼
n
1−ρD−γ

D . This dependence determines the fragmentation
kinetics,

dn

dt
= n

D(1−ρ)+1−γ
D (7)

which tells us that the number of grains increases with
time as

n=

[
n
Dρ−1+γ

D

0 +
Dρ− 1+ γ

D
(t− t0)

] D
Dρ−1+γ

, (8)

assuming that scaling holds from a time t0 when the
fluid contains n0 grains. We can identify three kinetic
scenarios. IfDρ− 1+ γ > 0, the number of grains increases
with time algebraically, with exponents controlled by the
breaking probability. On the contrary, for Dρ− 1+ γ < 0,
there exists a finite time singularity at which the number of
grains diverges. Dρ− 1+ γ = 0 corresponds to the limiting
situation where there is no singularity but the number
of grains increases exponentially. Equation (8) still holds
for γ = ρ= 0. The latter represents a heated granular gas
with constant breaking probability, P (L,Ep) = p, and it
leads to a finite time singularity. This case corresponds
to materials whose fragmentation probability does not
depend significantly on grains’ size and energy as may
happen for certain brittle materials [2]. The particular
case of a Weibull type breaking probability (γ =D− 1 and
ρ > 0) evolves as n∝ tD/(D(ρ+1)−2).
For elastic grains, α= 1, a steady velocity is reached in

the absence of heating, and we predict that its kinetics is
analogous to that of inelastic grains. The situation differs
for freely evolving gases, where the elastic limit α= 1 is
singular [21]. However, for α< 1 the kinetic scenarios for
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Fig. 1: Time evolution of the mean size (symbols; in log-
log) and mean velocity (lines; in log-linear), normalized by
their initial values, 〈m〉0 and 〈v〉0, for different inelasticities
and fragmentation probabilities. a) p= 0.01; b) Weibull frag-
mentation probability with ρ= 2. The corresponding analyt-
ical power law decays for the mean mass are displayed as
continuous lines. The insets show: a) different moments of the
mass distribution; b) mean breaking probability as a function
of the grain number. Used parameter, γ = 1; ρ= 0 (dotted
line), γ = 1; ρ= 1 (dashed line) γ = 1; ρ= 2 (dot-dashed line).
Straight lines show the corresponding theoretical predictions.

ψ= 0 and ψ∼ ω do not differ qualitatively, although for
freely evolving gases the exponents characterizing grains’
particle number and kinetic energy depend also on the
inelasticity coefficient α [23].
We have performed Direct Simulation Monte Carlo

(DSMC) [19,24] simulations to validate the scaling
hypothesis and to obtain the distribution functions in the
scaling regime. We have considered only two-dimensional
systems, D= 2, and have started from a monodisperse
initial condition. For all the fragmentation probabilities
studied we have found no significant deviation from
scaling. We will present results for fluids where the energy
is injected homogeneously using the Andersen-Lowe ther-
mostat [25] to ensure momentum conservation. However,
our results for the grain mass distributions are generic and
do not differ significantly if other mechanisms are used to
supply energy. In fig. 1a we display the typical grain mass
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and velocity as a function of time for two inelasticities for
a constant breaking probability. All other inelasticities
analyzed give analogous results. For a constant breaking
probability a finite-time singularity develops. To better
appreciate the scaling approach to the singularity it is
useful to study the time evolution in terms of a slower time
scale, τ , such that dτ = n(t)dt. In this time scale there
is no singularity, and the scaling solution of eq. (7) reads

n∝ τ D
D−1 , and accordingly, 〈m〉 ∼ τ− D

D−1 , for the mean
mass. To validate further the scaling hypothesis, we have
analyzed the decay of different moments of the mass distri-
bution to check that 〈mn〉 ∝ 〈m〉n (we show an example in
the inset of fig. 1a). In fig. 1b we display the time evolution
for the typical grain mass and velocity for a few examples
where the breaking probability tends asymptotically to
zero. As predicted theoretically, there is no finite time
singularity for the parameters ρ and σ considered, and
the typical mass decays algebraically with the expected
exponent. The inset of fig. 1b shows the dependence of the
breaking probability on grain size for different ρ values;
agreement with the predicted behavior is achieved.

Grain distributions. – DSMC also allows us to
analyze the grains’ size and velocity distributions. Scaling
implies that the distribution functions should collapse on
a universal curve when mass and velocities are scaled
by their characteristic mean values. We have numerically
verified that such a collapse is fulfilled for values of α and p
spanning at the range of allowed values. Figure 2a displays
the scaled mass distributions corresponding to different
restitution coefficients for a constant breaking probability.
In all cases the mass distribution has an algebraic decay
for small masses, and an asymptotic decay for large masses
consistent with an exponential. The latter feature is clearly
depicted in the inset, where the same mass distributions
are shown in linear-log scale. The algebraic divergence
at small masses has a characteristic exponent close to
−0.75± 0.05. The algebraic divergence is consistent with
theoretical predictions for a different family of collision-
induced models [1], although with different exponents.
Freely evolving elastic grains show a qualitatively differ-

ent behavior. Even if the kinetics for elastic and heated
inelastic grains is the same, the mass distributions differ
significantly for small masses, as depicted in fig. 2a. For
elastic grains, α= 1, a stronger divergence, controlled
by the smallest grains, develops. This qualitative change
appears also in the velocity distribution function (data
not shown) [23]. Elastic grains develop a two-peak velo-
city distribution, indicating that the smallest particles
have a larger kinetic energy. This behavior looks to
be reminiscent of freely evolving fragmenting gases [24],
where in the limit of nearly elastic grains a large asym-
metry in the grain kinetic energy has been reported. On
the contrary, for inelastic grains the velocity distributions
decay monotonously with velocity. If one injects energy
in an elastic granular gas while keeping its temperature
constant, then the mass distribution is indistinguishable
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Fig. 2: The scaled mass distribution f( m〈em〉 ), obtained for
fragmenting granular systems: a) constant breaking probability
p= 0.01. b) Weibull breaking probability, several disorder
values ρ are illustrated. In both figures, the dots corresponds
to a freely evolving elastic system gas and the fitted power law
decays are displayed as continuous lines. The insets show the
same curves in linear-log scales, illustrating the distribution
functions’ large mass decay.

from that of inelastic grains, as shown also in fig. 2a.
This indicates that the energy supply does not only serve
to set the energy scale of the steady state; it deeply
affects how grains break. Kinetic models that disregard the
coupling between collisions and fragmentation will miss
these qualitative effects on grains’ mass and velocity distri-
butions. Figure 2b displays mass distributions for frag-
menting probabilities which vanish asymptotically where
a plateau in the mass distribution, rather than a diver-
gence, is observed for small grains. For large masses we
see that the decay depends on ρ, and that as it increases
the curves converge to an algebraic decay characterized by
an exponent 2.30± 0.05 independent of ρ for the range of
sizes sampled. As ρ increases, we observe an asymptotic
decay, faster than algebraic, which sets in at larger scaled
masses the larger ρ. One can conjecture that the algebraic
decay observed does not correspond to the final asymp-
totic decay at large masses, although the crossover from
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one regime to the other as a function of ρ deserves a more
careful analysis.
We have also analyzed the velocity distribution func-

tions with DSMC. It is well known that inelasticity
produces large deviations from Maxwellian behavior, and
that the specific departure depends sensitively both on
how energy is supplied [19] as well as on the details of
grain interactions [20]. Generalized exponential tails are
predicted for hard spheres and algebraic tails for Maxwell
models. For fragmenting inelastic grains we have observed
that the decay at long velocities is less sensitive to the
energy injection mechanism than for their non-breaking
counterparts and that, depending on the details of energy
supply, the asymptotic decays are consistent with either
simple exponential or Gaussian tails [23].

Conclusions. – We have studied the kinetics of frag-
menting granular gases where fragmentation takes place
as a result of their collisions. We have focused on heated
systems, where a homogeneous steady state is reached as
a balance between energy supply and energy lost through
binary collisions, and where fragmentation depends on the
energy stored by the grains during the collision. We have
seen that the kinetics is essentially determined by the
asymptotic behavior of the fragmentation probability, and
have found two basic scenarios. If the fragmentation prob-
ability tends asymptotically to a finite value, a finite time
singularity appears, when the number of grains diverge.
On the contrary, if the breaking probability tends alge-
braically to zero, then the divergence is generically not
present. Although we have considered a general family of
breaking probabilities based on extreme statistics which
generalize Weibull model, since the kinetics is controlled
by the asymptotic algebraic decay of the fragmentation
probability the results obtained apply to any fragmenta-
tion probability which vanishes analytically. Contrary to
freely evolving gases, we have seen that the inelasticity
does not play a role in the gas kinetics. Hence, the study
of the kinetics in fragmenting system opens the possibility
to gain insight in the details of how such a fragmentation
takes place. The asymptotic behavior of the fragmentation
probability also determines the form of the size distri
bution functions. Hence, the study of such distributions
can also help to identify relevant mechanisms in the
fragmentation kinetics of these systems.
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