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Abstract – A formulation of (non-anticommutative) N = 1/2 supersymmetric U(N) gauge
theory in noncommutative space is studied. We show that at one loop UV/IR mixing occurs.
A generalization of Seiberg-Witten map to noncommutative and non-anticommutative superspace
is employed to obtain an action in terms of commuting fields at first order in the noncommutativity
parameter θ. This leads to Abelian and non-Abelian gauge theories whose supersymmetry
transformations are local and non-local, respectively.
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Introduction. – Deformation of superspace where
fermionic coordinates are non-anticommuting appeared in
some different contexts [1–6]. At the start one can simul-
taneously deform bosonic coordinates allowing them to
be noncommuting, in terms of a star product embracing
both of the deformations [7]. However, as far as gauge
theories are concerned, usually non-anticommutativity is
considered alone. Instead of introducing noncommutativ-
ity of bosonic coordinates and non-anticommutativity of
fermionic ones simultaneously from the beginning, we may
do it in two steps: N = 1/2 supersymmetric gauge theory
action in components includes ordinary fields and non-
anticommutativity parameter [2]. Thus its noncommuta-
tive generalization can be obtained as usual. However, the
same action would result using the superfield formulation
given in [7]. Hence, two approaches are equivalent. We
study this non-anticommutative as well as noncommuta-
tive theory.
One of the most important features arising in field theo-

ries in noncommutative space is the UV/IR mixing [8].
In supersymmetric gauge theory in noncommuting space,
linear and quadratic poles in the noncommutativity para-
meter θ are absent at one loop, due to the fact that contri-
butions from fermionic and bosonic degrees of freedom
cancel each other. First loop Feynman graph calculations
for noncommutative supersymmetric gauge theory with
Abelian gauge group was studied in [9–11] and U(N) case
was considered in [12–14].
Renormalization ofN = 1/2 supersymmetric Yang-Mills

theory was discussed in [7,15–23]. For the gauge group

U(N), renormalizability at one loop requires to alter the
original action. In [16] it was commented that in supersym-
metric gauge theory where both noncommutativity and
non-anticommutativity are present, there would be UV/IR
mixing. Although we do not study renormalizability prop-
erties of the non-anticommutative and noncommutative
theory, we will show that UV/IR mixing is present by an
explicit calculation for U(1) case.
Seiberg and Witten [24] introduced an equivalence

relation between the gauge fields Â taking values in
noncommutative gauge group and the ordinary gauge
fields A as

Â(A)+ δ̂φ̂Â(A) = Â(A+ δφA). (1)

Here φ̂ and φ denote gauge parameters of the noncom-
mutative and ordinary cases. Seiberg-Witten (SW) map
allows one to deal with noncommutative gauge theory
in terms of an action expanded in the noncommutativ-
ity parameter θ with ordinary gauge fields. We would like
to study its generalization to superspace. Gauge transfor-
mations of N = 1/2 supersymmetric theory in component
fields does not depend on the non-anticommutativity para-
meter C, owing to the parametrization of vector superfield
given in [2]. As we will explicitly show, this is a general-
ization of SW map to non-anticommutative superspace.
Generalizations of SW map to C deformed superspace are
studied in [25] and [26]. It is also studied in harmonic
superspace [27]. We will discuss in detail how generaliza-
tions of SW map to superspace can be obtained in terms
of component fields. When only non-anticommutativity is
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present one can chose to work either with ordinary super-
symmetry transformations with a deformed gauge trans-
formation or without deforming gauge transformations
but changing supersymmetry transformations as in [2]. On
the other hand, for only θ deformed superspace SW map
includes deformation of supersymmetry as well as gauge
transformations [28–31]. As is clear from its definition (1),
SW map refers only to gauge transformations. Hence, it
is not a priori guaranteed that a noncommutative gauge
theory will be gauge invariant after performing SW map.
However, as we will show in the generalization of SW map
there is a freedom of choosing Cθ-dependent terms once
the C and θ deformed parts are fixed separately. Thus,
Cθ-dependent terms can be chosen such that the resul-
tant theory becomes gauge invariant but supersymmetry
transformations should be deformed.
In the second section we present N = 1/2 supersymmet-

ric gauge theory action in noncommutative space exhibit-
ing its gauge and supersymmetry invariance. Moreover, we
show that UV/IR mixing occurs. In the third section first
we discuss how to generalize SW map to noncommuting
and/or non-anticommuting superspace gauge transforma-
tions. Then, we apply SW map to U(1) and non-Abelian
noncommutative and noncommutative gauge theory to
obtain θ-expanded actions. Supersymmetry transforma-
tions of the latter become non-local to preserve gauge
invariance of the resultant action.

Noncommutative N = 1/2 supersymmetric gauge
theory. – In terms of constant, respectively, symmetric
and antisymmetric parameters Cαβ and θ

ρσ, let the
Grassmann coordinates θα, α= 1, 2, θ̄α̇, α̇= 1, 2, and
bosonic coordinates yµ = x̃µ+ iθσµθ̄, µ= 0, . . . , 3, satisfy
the deformed brackets [2]

{θ̂α, θ̂β}=Cαβ , [ŷρ, ŷσ] = iθρσ, (2)

{θ̂α, θ̄α̇}= 0, {θ̄α̇, θ̄β̇}= 0, (3)

[ŷρ, θ̄α̇] = 0, [ŷρ, θ̂α] = 0. (4)

This is possible only in Euclidean space. Although we
deal with Euclidean R4, we use Minkowski space notation
and follow the conventions of [32]. We will also use
the antisymmetric parameter Cµν =Cαβεβγσ

µνγ
α which

satisfies the self-duality property

Cµν =
i

2
εµνρλCρλ. (5)

An associative star product embracing both of the defor-
mations was introduced in [7]

f(y, θ)�̃g(y, θ) = f(y, θ) exp
(
i
2θ
µν
←−
∂
∂yµ

−→
∂
∂yν

− 12Cαβ
←−
∂
∂θα

−→
∂
∂θβ

)
g(y, θ)≡ f(y, θ) C� θ� g(y, θ), (6)

where the derivatives ∂/∂θα are defined to be at fixed yµ
and θ̄. In fact, one can separate C- and θρσ-dependent

parts which we denote
C
� and

θ
�.

Instead of dealing with the �̃ product we will proceed
in a different way. Seiberg considered the case θρσ =
0 in terms of a vector superfield written in a Wess-
Zumino gauge which was employed to write the action
in commuting coordinates xµ as (note that we do not
deal with ˆ̃x coordinates appearing in ŷ which would be
noncommuting)

S =
1

g2

∫
d4x tr

{
− 1
4
FµνFµν − iλ/Dλ̄+ 1

2
D2

− i
2
CµνFµν λ̄λ̄+

|C|2
8
(λ̄λ̄)2

}
. (7)

Fµν is the non-Abelian field strength related to the gauge
field Aµ. λ, λ̄ are independent fermionic fields and D
is auxiliary bosonic field. Covariant derivative is defined
as Dµ = ∂µ+ i[Aµ, ·]. The action (7) is invariant under
the usual gauge transformations and it possesses N = 1/2
supersymmetry.
Obviously, (7) is a theory in commuting coordinates

though the constant parameter C appears. Hence, consid-
ering it in noncommuting space letting the coordinates
satisfy

[x̂µ, x̂ν ] = iθµν (8)

is legitimate. We introduce the star product

f(x) � g(x) = f(x)e
i
2 θ
µν
←−
∂µ
−→
∂ν g(x) (9)

and work with the commuting coordinates xµ satisfying
the Moyal bracket

[xµ, xν ]� ≡ xµ � xν −xν � xµ = iθµν . (10)

By replacing ordinary products with the star prod-
uct (9) in (7), one obtains the action

I =
1

g2

∫
d4x tr

{
− 1
4
F̂µνF̂µν − iλ̂/D � ˆ̄λ+ 1

2
D̂2

− i
2
CµνF̂µν

ˆ̄λ � ˆ̄λ+
|C|2
8
(ˆ̄λ � ˆ̄λ)2

}
. (11)

Here we adopted the definitions

F̂µν = ∂µÂν − ∂νÂµ+ i[Âµ, Âν ]�,
/D � ˆ̄λ = /∂ ˆ̄λ+ i[/̂A, ˆ̄λ]�.

This noncommutative gauge theory would also have
resulted from the superfield formulation of N = 1/2 super-
symmetric theory discussed in [7] by making use of the
parametrization given in [2] for vector superfields.
We assume that surface terms are vanishing, so that the

following property is satisfied:∫
d4xf(x) � g(x) =

∫
d4xf(x)g(x).

Gauge transformations of the fields are

δÂµ = ∂µφ̂− i
[
φ̂, Âµ

]
�
,

δλ̂α = −i
[
φ̂, λ̂α

]
�
,

δ ˆ̄λα̇ = −i
[
φ̂, ˆ̄λα̇

]
�
,

δD̂ = −i[φ̂, D̂]
�
,

(12)
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where φ̂ denotes gauge parameter. Making use of (12) one
can observe the following transformations:

δF̂µν = −i
[
φ̂, F̂µν

]
�
,

δ(/D � ˆ̄λ) = −i[φ̂, /D � ˆ̄λ]�,
δ(ˆ̄λ � ˆ̄λ) = −i[φ̂, ˆ̄λ � ˆ̄λ]�.

Therefore, we can conclude that the action (11) is gauge
invariant under noncommutative U(N) gauge transforma-
tions.
On the other hand, supersymmetry transformations of

the component fields can be defined as

δS λ̂= iξD̂+σ
µνξ(F̂µν +

i

2
Cµν
ˆ̄λ � ˆ̄λ), (13)

δSÂµ =−iˆ̄λσ̄µξ, (14)

δSD̂=−ξσµDµ � ˆ̄λ, (15)

δS
ˆ̄λ= 0, (16)

where ξα is a constant Grassmann parameter. To discuss
supersymmetry properties of the action (11) one needs to
make use of the relation

σρλσµ =
1

2
(−ηµλσρ+ ηµρσλ+ iεµρλκσκ).

The C = 0 part can be shown to be supersymmetric using
the Bianchi identity εµνλρDµ � F̂νλ = 0, which is due to
the associativity of star product. On the other hand, the
Cµν-dependent terms yield∫

d4xξ
{
2(σνC

µνDµ �
ˆ̄λ)(ˆ̄λ � ˆ̄λ)+ εµνρλσνCρλ(

ˆ̄λ � ˆ̄λ)

×(Dµ � ˆ̄λ)− 4(σνCµνDµ � ˆ̄λ)(ˆ̄λ � ˆ̄λ)
}
= 0,

where the self-duality condition (5) is utilized. Hence, (11)
is a noncommutative N = 1/2 supersymmetric U(N)
gauge theory action.
To perform perturbative calculations one should intro-

duce ghost fields to fix the gauge. Moreover, matter fields
may also be added. Let us consider noncommutative U(1)
gauge group. In this case, Feynman rules can be read from
the N = 1/2 supersymmetric U(N) gauge theory [15] by
the replacement of the structure constants:

fa1a2a3 −→ 2 sin
(
k̃2k3

)
, (17)

da1a2a3 −→ 2 cos
(
k̃2k3

)
, (18)

where we denoted k̃µ ≡ θµνkν . Here, k2 and k3 are the
momenta of the lines corresponding to the indices a2
and a3, respectively. Instead of giving a full discussion of
one-loop calculations, we would like to consider only the
following non-planar one-loop diagram:

A

λ̄α̇ λ̄

λ

λ

λ̄

λ̄β̇

Aµ

p3

p1

p2

which is typical of the N = 1/2 supersymmetric gauge
theory. The amplitude is proportional to

∝ g3Cκνσκββ̇σµγδ̇εα̇γ̇
∫
d4k
(2π)4

kν(/k−/p1)γ̇γ(/k+/p2)δ̇β
k2(k−p1)2(k+p2)2

× cos(k̃p1) sin(k̃p2) sin(k̃p3).
Using the calculation methods of [9], one can observe that
this amplitude produces low momenta poles as

g3Cκνσκββ̇σ
µ

γδ̇
εα̇γ̇
l̃ν(/̃l)

γ̇γ(/̃l)δ̇β

l̃4
, (19)

where lµ are some definite functions of p:

l= l(p1, p2, p3).

To get the correct factors we should take into account
contributions coming from all of the diagrams including
ghosts and also matter if they are coupled. Nevertheless,
calculation of the above diagram shows that UV/IR
mixing occurs.

Generalized SW map and θρσ-expanded action.
– To attain θρσ-expanded action in terms of ordinary
component fields we first should discuss in detail how
SW map (1) can be generalized to noncommutative
and/or non-anticommutative superspace. SW map (1)
clearly alludes only to gauge transformations, it does
not refer to any gauge theory action. Hence, although
one applies the map to a gauge invariant noncommuting
and/or non-anticommuting theory it is not guaranteed
that the resultant action will possess the ordinary gauge
invariance. However, we will show that in the superspace
with noncommuting and non-anticommuting coordinates
it can be chosen appropriately such that the resultant
action is gauge invariant.
In the ordinary (non-deformed) superspace infinitesimal

gauge transformations of component fields derived from

δΛe
V =−iΛ̄eV + ieV Λ. (20)

Let us deal with U(1) gauge group to illustrate how
generalizations of SW map can be obtained. Using the
parametrization of [2] we define the non-deformed vector
superfield as

V =−θσµθ̄Aµ+ iθθθ̄λ̄− iθ̄θ̄θλ+ 1
2
θθθ̄θ̄ (D− i∂µAµ) ,

(21)

which satisfies V 2 =−(1/2)θ̄θ̄θθAµAµ and V 3 = 0. The
appropriate gauge parameters are

Λ= φ+
i

2
θσµθ̄∂µφ, (22)

Λ̄ = φ− i
2
θσµθ̄∂µφ+

1

2
θθθ̄θ̄∂2φ. (23)

To obtain infinitesimal gauge transformations we need to
deal not only with V but with Σ= V + 12V

2. Indeed,

δΛΣ=−i
(
Λ̄−Λ+ Λ̄Σ−ΣΛ) (24)
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yields the ordinary infinitesimal gauge transformations of
the component fields. Noncommutative gauge transforma-
tions are defined as

δΛ̄Σ̂Λ =−i
(
ˆ̄Λ− Λ̂+ ˆ̄Λ�̃Σ̂− Σ̂�̃Λ̂

)
, (25)

by replacing multiplication of bilinear components with
the star product �̃, in (24), so that we also need

V̂ �̃V̂ =−1
2
θ̄θ̄

(
θθÂµ

θ
� Âµ+

1

4
|C|2 ˆ̄λ θ� ˆ̄λ

)
, V̂ �̃V̂ �̃V̂ = 0.

Note that the star product
θ
� is in terms of y coordinates.

Generalization of SW map to noncommutative and non-
anticommutative superspace gauge transformations can be
defined by the equivalence relation

Σ̂(Σ)+ δ̂Λ̂Σ̂(Σ) = Σ̂(Σ+ δΛΣ). (26)

This is obtained by replacing the gauge field A with the
vector superfield Σ and the gauge parameter φ with the
supergauge parameter Λ in (1).
We deal with U(1) gauge group to solve the equivalence

relation (26). Keeping terms first order in θµν , Cαβ and
Cθ which are denoted as

Σ̂ =Σ+Σ(C)+Σ(θ)+Σ(Cθ) ≡Σ+Σ(1), (27)

Λ̂ = Λ+Λ(C)+Λ(θ)+Λ(Cθ) ≡Λ+Λ(1), (28)

ˆ̄Λ = Λ̄+ Λ̄(C)+Λ̄(θ)+Λ̄(Cθ) ≡ Λ̄+ Λ̄(1), (29)

eq. (26) leads to

Σ(1) (Σ+ ∂ΛΣ)−Σ(1) (Σ)+ iΛ̄(1)− iΛ(1) =
i
(
Σ+Σ(1)

)
(�̃− 1) (Λ+Λ(1))

−i (Λ̄+ Λ̄(1)) (�̃− 1) (Σ+Σ(1)) . (30)

To acquire a better understanding, let us discuss it
first for only non-anticommutative superspace by setting

θρσ = 0. When only
C
� survives (30) leads to

Σ(C) (Σ+ ∂ΛΣ)−Σ(C) (Σ)+ iΛ̄(C)− iΛ(C) =
−Cαβ (∂αΣ∂βΛ− ∂αΛ̄∂βΣ) , (31)

where we denoted ∂/∂θα ≡ ∂α. There are two different
ways of solving this equation: the first one is to choose

Σ(C) = 0, Λ(C) = 0, Λ̄(C) =
1

2
θ̄θ̄θαC

αβσµβα̇∂µφλ̄
α̇, (32)

so that the gauge transformations are changed, though
supersymmetry transformations are given by the ordinary
ones. The second solution is not to retain ordinary gauge
transformation but to change supersymmetry transforma-
tions by deforming the vector superfield as

Σ(C) =− i
2
θ̄θ̄θαC

αβσµβα̇Aµλ̄
α̇, Λ(C) = 0, Λ̄(C) = 0. (33)

Indeed, this is Seiberg’s solution which resulted inN = 1/2
supersymmetric gauge theory. In the following we will deal
only with the latter solution.

Now, let only
θ
� survive by setting C = 0 in (30). Hence,

in terms of the component fields Vi ≡ (A, λ, λ̄,D), and the
ordinary gauge transformations δφ, (30) yields

A(θ)µ(Vi+ δφVi)−A(θ)µ(Vi) =−∂µφ(θ)+ θρσ∂ρφ∂σAµ,
(34)

λα(θ)(Vi+ δφVi)−λα(θ)(Vi) = θρσ∂ρφ∂σλα, (35)

λ̄α̇(θ)(Vi+ δφVi)− λ̄α̇(θ)(Vi) = θρσ∂ρφ∂σλ̄α̇, (36)

D(θ)(Vi+ δφVi)−D(θ)(Vi) = θρσ∂ρφ∂σD. (37)

They had already been obtained in [30] and can be solved
as

A(θ)µ = θ
ρσAρ(∂σAµ− ∂µAσ/2), (38)

D(θ) = θ
ρσAρ∂σD, (39)

λ(θ)α = θ
ρσAρ∂σλα, (40)

λ̄α̇(θ) = θ
ρσAρ∂σλ̄

α̇. (41)

We are concerned with N = 1/2 supersymmetric gauge
theory in noncommuting space. Hence, when we deal with
the full-fledged star product �̃ we would like to keep
Seiberg’s solution (33) for Σ(C). Therefore, we plug (33)
into (30) which results in

Σ(θ) (Σ+ δΛΣ)+Σ(Cθ) (Σ+ δΛΣ)−Σ(θ) (Σ)
−Σ(Cθ) (Σ)+ iΛ̄(θ)+ iΛ̄(Cθ)− iΛ(θ)− iΛ(Cθ)
−1
2
θ̄θ̄
[
θθ(∂µφ(θ)A

µ+ ∂µφA
µ
(θ)+ ∂µφ(Cθ)A

µ

+∂µφA
µ
(Cθ))+ iθαC

αβσµβα̇(∂µφ(θ)λ̄
α̇+ ∂µφλ̄

α̇
(θ))
]

=
i

4
θρσCαβ

(
∂α∂ρΛ̄∂β∂σΣ− ∂α∂ρΣ∂β∂σΛ

)
. (42)

For only θρσ part we would like to retain the equa-
tions (34)-(37) by adopting the solutions (38)-(41). After
some calculations, one can show that (42) simplifies and
we are left with only Cθ-dependent terms:

Σ(Cθ) (Σ+ δΛΣ)−Σ(Cθ) (Σ)+ iΛ̄(Cθ)− iΛ(Cθ)
−1
2
θ̄θ̄θθ(∂µφ(Cθ)A

µ+ ∂µφA
µ
(Cθ)) = 0. (43)

In components it yields

Aµ(Cθ)(Vi+ δφVi)−Aµ(Cθ)(Vi)+ ∂µφ(Cθ) = 0, (44)

λα(Cθ)(Vi+ δφVi)−λα(Cθ)(Vi) = 0, (45)

λ̄α̇(C)(Vi+ δφVi)− λ̄α̇(Cθ)(Vi) = 0, (46)

D(Cθ)(Vi+ δφVi)−D(Cθ)(Vi) = 0. (47)
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We will not work out their solutions1 but note that there
is the trivial solution

Aµ(Cθ) = λ
α
(Cθ) = λ̄

α̇
(Cθ) =D(Cθ) = φ(Cθ) = 0. (48)

Instead of dealing with the trivial solution (48) one can
add Cθ-dependent terms. However, this will result in
changing the supersymmetry transformations of the fields
as will be discussed.
When component fields are deformed by adding
C- and/or θρσ-dependent terms, supersymmetry trans-
formations of commuting fields should also be deformed,
[2,28–31]. Let us discuss how deformed supersymmetry
transformations can be obtained. Denote the original
supersymmetry transformations of components as

δSVi = fi(Vj , ξ). (49)

By replacing the original components with the deformed
ones one gets

δS V̂i = fi(V̂j , ξ). (50)

Now, perform the map

V̂i(V ) = Vi+Vi(C)+Vi(θ)+Vi(Cθ), (51)

and plug it in the left as well as in the right-hand side
of (50). Then one can read deformed supersymmetry
transformation of ordinary component fields as

δSVi = fi(V̂j(V ), ξ)− δSVi(C)− δSVi(θ)− δSVi(Cθ). (52)
As an example, one can show that when one deals with
only C deformed case and adopts Seiberg’s solution (33),
the N = 1/2 supersymmetry transformations (13)-(16)
with θρσ = 0 follow.
Let us apply SW map to N = 1/2 supersymmetric

gauge theory in noncommutative space. For the U(1) case
we adopt Seiberg’s solution for the C-dependent part (33),
hence the action (11) with U(1) results. Then, using the
solutions (34)-(37) and (48) for θρσ- and Cθ-dependent
terms, (11) yields the θ-expanded N = 1/2 supersymmet-
ric gauge theory action up to the first order in θ for U(1)

I(1) =

∫
d4x

[
− 1
4
FµνF

µν − iλ/∂λ̄− i
2
CµνFµν λ̄

2

+
1

2
D2− θρσ

(
− 1
2
FµνFνσFµρ+

1

8
FρσFµνF

µν

−1
4
D2Fρσ +

i

2
Fρσλ/∂λ̄+ iλσ

µ∂σλ̄Fµρ

+
i

2
CµνFµρFνσλ̄

2− i
4
CµνFρσFµν λ̄

2

)]
. (53)

1In [25] after making use of Seiberg’s solution for C deformed
vector superfield (33), additional C-dependent fields and parameters
were introduced and equations for components were derived. They
are the same with (44)-(47) by replacing Cθ components of fields
and parameters with these additional C-dependent ones. Hence, the
discussions of [25] regarding solutions can be applied to our case up
to an overall θρσ-dependence.

Although (53) possesses the usual U(1) gauge invariance
its supersymmetry transformations should be altered.
Deformed supersymmetry transformations can be read
by making use of the general formula (52) with the
transformations (13)-(16) as

δSAµ = iξσµλ̄− i
2
θρσξσρλ̄(∂σAµ+Fσµ)

+
i

2
θρσξσσAρ∂µλ̄, (54)

δSλ = iξD− ξσµνFµν + θρσξσµνFµρFνσ
+
i

2
σµνξCµν λ̄

2− iξθρσ∂ρλσσλ̄, (55)

δS λ̄=−iθρσξ∂ρλ̄σσλ̄, (56)

δSD = −ξσµ∂µλ̄+ θρσξσµ∂ρλ̄Fµσ
+iθρσξσσ∂ρDλ̄, (57)

which can be shown to yield

δSFµν = iξ(σν∂µλ̄−σµ∂ν λ̄)+ iξθρσσρ(∂µλ̄Fνσ
−∂ν λ̄Fµσ)− iξθρσσρλ̄∂σFµν .

In fact, we explicitly checked that the action (53) is
invariant under the θ-expanded supersymmetry transfor-
mations (54)-(57).
The θ-expanded U(1) gauge theory action (53) can

be utilized to study some different aspects of noncom-
muting N = 1/2 supersymmetric gauge theory. Similar
to noncommuting electrodynamics one can calculate
one-loop renormalization properties of this theory [33]
and find solutions of equations of motion [34]. Moreover,
using the master action of N = 1/2 supersymmetric
U(1) gauge theory given in [35], one can study duality
properties of the action (57).
We would like to apply SW map to non-Abelian gauge

theory in the light of the approach used for U(1). Thus
we adopt Seiberg’s solution for only the C-dependent
part of SW map which yields the noncommutative U(N)
gauge theory action (11). Then, for the θρσ part of the
component fields, we adopt the generalization of SW map
given in [29]:

A(θ)µ =
θρσ

4
{Aρ, ∂σAµ+Fσµ},

F(θ)µν =
θρσ

4
(2{Fµρ, Fνσ}−{Aρ, (Dσ + ∂σ)Fµν}) ,

D(θ) =
θρσ

4
{Aρ, (Dσ + ∂σ)D}, (58)

λ(θ)α =
θρσ

4
{Aρ, (Dσ + ∂σ)λα},

λ̄α̇(θ) =
θρσ

4
{Aρ, (Dσ + ∂σ)λ̄α̇}.

As we have already emphasized, SW map does not refer to
any action but it is an equivalence relation between gauge
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transformations. Hence, a priori one cannot guarantee
that a noncommutative gauge theory will remain gauge
invariant under SW map. Indeed, if we choose to work
with the trivial solution (48) for Cθ-dependent terms, the
resultant theory will not be gauge invariant. Therefore, as
the Cθ term we choose the non-local one:

λα(Cθ) =−
θρσ

8
CµνFµν{[λ̄α̇, Aρ], (∂σ +Dσ)λ̄α̇}(σκDκλ̄)−1α ,

(59)

with the other components vanishing. Obviously, the
gauge parameters Λ(Cθ) and Λ̄(Cθ) should be appropriately
chosen such that (43) be satisfied. When we employ the
map (58) and (59) in the action (11), up to some surface
terms, we attain

I =
∫
d4x tr

[
− 14FµνFµν − iλσµDµλ̄+ 12D2,

+ θ
ρσ

8

(
4FµνFµρFνσ −FσρFµνFµν +2D2Fρσ,

−2{Fρσ, λ}σµDµλ̄− 4λσµ{Fµρ,Dσλ̄}
)
,

− i2Cµν
(
Fµν λ̄

2− θρσFµρFνσλ̄2− θρσ4 {Fσρ, Fµν}λ̄2,

+ |C|
2

8

(
λ̄2λ̄2− θρσ4 {Fσρ, λ̄4}

)]
. (60)

The price which we pay for adding some Cθ-dependent
terms to obtain gauge invariance is to change supersymme-
try transformations in terms of (52). Obviously, new super-
symmetry transformations of λ will have a non-local part.
For non-abelian case even the local parts of new super-
symmetry transformations become so complicated that we
do not present them here. Obtaining some other solutions
of (43) which respects gauge invariance is an open problem
which should be studied.

∗ ∗ ∗
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