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Abstract – We use a quantum lattice gas model to describe essential aspects of the motion of 4He

atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects
and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal
into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during
the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate)
is known to be important even at very small (1 ppm) impurity concentration. It is also proposed
that such defects can form a glass phase during the 4He solid growth by rapid cooling.

Copyright c© EPLA, 2007

Kim and Chan [1] (KC) using the torsional oscillator
technique found a decrease in the resonant period of solid
4He confined in porous vycor glass and in bulk solid
helium below 200mK, indicating the possible onset of
superfluidity in solid helium. The experimental results of
KC have been independently confirmed by Rittner and
Reppy [2] (RR) using a different geometry to confine the
solid. In addition, RR observed that the superfluidity of
solid helium can be significantly influenced or eliminated
by annealing of the solid helium sample. Because of
these history-dependent results and the negative results in
attempts to drive flow by pressure [3], the interpretation
of the results of KC is subject to debate.
Furthermore, it has been observed that the superfluid

response and superfluid fraction are strongly dependent
on the amount of isotopic 3He impurities which exist
in the naturally available helium. When, for example,
the naturally occurring concentration of 3He impurities
of about one part per million is reduced to less than
one part per billion [4] the superfluid fraction is reduced
from about 1% to approximately 0.03%. When the 3He
impurity concentration is increased to about 0.1% the
superfluid fraction vanishes [1]. Previously, Ho et al. [5]
found an anomalous behavior of the acoustic attenuation
and velocity in solid 4He below ∼ 200mK at a low
concentration of 3He impurities.
The possibility of superfluidity of solid 4He has been

extensively discussed [6–9]. It is of fundamental value for

our understanding of this and related phenomena because
of the implication that there can be coexistence between
spatial and momentum space order [10].
In this paper we study the role of very low density

of impurities in a bosonic hard-core solid. While the
theoretical studies of the role of impurities in solid helium
has a long history [6,11], the present study, based on an
analogy with models of doped quantum antiferromagnets
and by using rather recently developed techniques for such
systems, sheds some “new” light on the problem. Our
model, that describes the impurity motion in an otherwise
ideal quantum bosonic crystal, maps to a quantum spin
model with antiferromagnetic (AF) coupling and AF
order in one direction and ferromagnetic coupling in the
perpendicular direction with impurities moving through
the lattice. The impurity motion between sub-lattices
couples to quantum fluctuations of these pseudo-spin
degrees of freedom which correspond to the boson hopping
from an occupied site of the solid to an empty interstitial
site. We find that, for the limit which describes the case of
solid 4He, interstitial atoms are well-defined delocalized
excitations. It is suggested that during the 4He solid
nucleation process, the 3He impurities stabilize point
defects such as dislocations or disclinations at the solid-
to-liquid interface which become lines of defects as the
solid grows. These defects can become highly entangled
and can form a glass phase at low temperature. The 3He
impurities become bound to these defects and promote
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mobile interstitial 4He atoms into the disordered solid. We
find that such interstitial atoms can condense and may be
responsible for the observed behavior [1].
Let us consider a lattice gas model to describe the

bosonic solid and the added impurities. In such a model,
we need to consider the interstitial sites as part of the
lattice and, thus, the ideal quantum solid containing no
vacancies and no impurities, corresponds to a fractionally
occupied lattice. For example, the ideal triangular solid
corresponds to the case of 1/3 filling, namely, to a

√
3×√3

ordered solid and the ideal square lattice solid corresponds
to the

√
2×√2 checkerboard solid, i.e., 1/2 filling of the

lattice with bosons. Our model Hamiltonian describing a
bosonic quantum solid (such as solid 4He) and a small
concentration of impurities (such as 3He atoms) may be
written as follows:

Ĥ= ĤB + Ĥ∗+ Ĥint−µ
∑
i

N̂i−µ∗
∑
i

n̂i, (1)

ĤB =
∑
〈ij〉
[−tb(B†iBj +H.c.)+V N̂iN̂j ] +U

∑
i

N̂2i , (2)

Ĥ∗ =
∑
〈ij〉
[−t(c†i cj +H.c.)+Wn̂in̂j ] +U∗

∑
i

n̂2i , (3)

Ĥint = V ∗
∑
〈ij〉
(N̂in̂j + n̂iN̂j)+U

′∑
i

n̂iN̂i, (4)

HB is the Hamiltonian of the bosonic solid, and B†i (Bi) are
boson creation (annihilation) operators and N̂i =B

†
iBi.

The fermion operators c†i (ci) create (or annihilate)
impurities on the site i and we have suppressed their spin
degree of freedom for simplicity. Here, ni is the impurity
number operator. We will consider the U →∞, U∗→∞
and U ′→∞ limits (single-site occupation subspace)
because of the the hard-core interaction. V , V ∗ and W
are positive because of the additional energy cost to place
an atom in an interstitial site.
In the absence of impurities the well-known pure bosonic

Hamiltonian (2), in the limit of U →∞ and under the
transformation B†i → S+i , Bi→ S−i , Ni→ Szi − 12 ,where
(Ŝxi , S

y
i , S

z
i ) are spin-(1/2) operators, reduces to the

anisotropic spin-(1/2) Heisenberg model [12]

ĤB =
∑
〈ij〉
[JSzi S

z
j +Jxy(S

x
i S
x
j +S

y
i S
y
j )]−H

∑
i

Szi , (5)

where J = V > 0 and Jxy =−2tb < 0 and H = µ− z/2V ,
z is the coordination number.
In order to illustrate the effects of the impurities on

the stability of the quantum solid and, vice versa, we first
consider the square lattice because of its simplicity. Follow-
ing the general spin-wave (SW) theory for an ordered
square lattice quantum antiferromagnet [12], we separate
the ordered square lattice in two sub-lattices, A (or up,
or occupied) and B (down, or empty) and we consider

boson operators a†i and b
†
i which create spin-deviations

with respect to the classical Néel ground state in sites
of the corresponding sub-lattice. The Hamiltonian (5) is
approximated by keeping terms up to quadratic in spin-
deviation operators; using the Fourier transforms ak and
bk of the operators ai and bi (as defined in ref. [12]), where
k takes values from the Brillouin zone of the

√
2×√2

sub-lattice and introducing the Bogoliubov canonical
transformation, ak = ukαk+ vkβ

†
−k, bk = ukβk− vkα†−k,

where α†k and β
†
k are boson creation operators, the

Hamiltonian takes the form

HBL =E0+
∑
k

(
ωαkα

†
kak+ω

β
kβ
†
kβk

)
, (6)

where ωα,βk = dJεk±H, εk =
√
1−λ2γ2k, γk =

1/2(cos(kx)+ cos(ky)), d= 2 and λ= Jxy/J , and

uk =
√
1/2(1/εk+1), vk =−sgn (γk)

√
1/2(1/εk− 1).

It follows from eq. (6) that for ωα,β0 � 0, i.e., for H �
dJ
√
1−λ2, the Néel ordered ground state is unstable.

Ferromagnetic (superfluid in the Bose system) order devel-
ops in the xy direction and the spins are canted in order to
acquire a component along the direction of the field. The
phase diagram obtained for this model with this spin-wave
approximation agrees reasonably well with that obtained
by other techniques [13]. When the square lattice is half-
filled there is a gapG= dJ

√
1−λ2 for creating a propagat-

ing pseudo-spin wave excitation, i.e., to promote a boson
atom to the interstitial band. These interstitial quasipar-
ticles move in a band which in the limit of Jxy� J has a
bandwidth WdJ2xy/2J .
We wish to extend this approach to study the motion of

a single impurity inside the quantum solid. As in ref. [14],
we consider as reference state the Néel state with an
impurity on the A (substitutional) or B (interstitial) sub-

lattices. We imagine that there exist operators h†i and f
†
i

which operate on the Néel state and replace, respectively,
an up-spin or down-spin with an impurity. For the single-
impurity case and by keeping only up to linear terms in
spin-deviation operators the terms given by eqs. (3), (4)
in terms of these operators take the form Ĥ∗+ Ĥint =
−t∑〈ij〉,i∈A(a†if†j hi+H.c.)+V ∗d

∑
i∈B f

†
i fi. The entire

linearized Hamiltonian (1), using the the Bogoliubov
transformation, takes the following form:

HL =
∑
k

[ε1h
†
khk+ ε2f

†
kfk] +

∑
k,q

[
g
(1)
kq (f

†
k−qhkα

†
q

+h†kfk−qαq)+ g
(1)
kq (f

†
khk−qβq+h

†
k−qfkβ

†
q)
]
+HBL ,

where ε1 = 0, ε2 = V
∗d and HBL is given by eq. (6). The

operators f†k and h
†
k are the Fourier transforms of f

†
i

and h†i , respectively, and where g
(1)
kq = d

√
2/Ntγk−quq,

g
(2)
kq = d

√
2/Ntγkv−q. The two Dyson’s equations in the

non-crossing approximation are given as follows [14]:

Gν(k, ω) =
1

ω− εν −
∑
q g
(ν)2
kq Gν′(k−q−ω−ωµq)

, (7)
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Fig. 1: The spectral functions A(k, ω) for J/t= 3 (left) and
J/t= 6 (right) along the Brillouin zone path (0, 0)→ (π, 0)→
(π, π)→ (0, 0).

where the first equation is obtained for ν = 1, ν′ = 2 and
µ= α and the second equation for ν = 2, ν′ = 1 and µ= β.
Here ωα,β(q) are given after eq. (6). The Green’s function
G1 (G2) corresponds to the quasi-particles created by

h†k (f
†
k). These equations can be solved iteratively as in

ref. [14] starting from G
(0)
ν (k, ω) = 1/(ω− εν + iη).

In our calculations we took V ∗ = V = J , Jxy = 2t
(i.e., t= tb), H = 0 and ε= 0.1. As discussed later, NMR
measurements [15] indicate that for 3He impurities in solid
4He we should consider J/t� 1. In fig. 1 the spectral func-
tion A(k= 0, ω) is presented for the case of J/t= 3 (left)
and J/t= 6 (right). For the J/t= 3 case, the dashed lines
(lower energy curves) correspond to the spectral function
of the substitutional impurity and the solid lines to the
interstitial. Notice that for J/t= 3 the bandwidth WA of
the substitutional impurity is small. For J/t= 6, WA is
very small, i.e., WA/t∼ 10−3, and, hence, we only show
the spectral function of the interstitial impurity for this
value of J/t (right part of fig. 1). Notice that the spectral
function of the interstitial impurity has two main peaks,
a lower frequency peak with small spectral weight and a
higher frequency one with most of the spectral weight.
In the regime of J� t, the leading order in t/J which

allows the substitutional impurity or a 4He atom to move
is the fourth-order process shown in fig. 2 (a)-(e). Hence,
the impurity moves in a band with a bandwidth of the
order of WA/t=A(t/J)

3 in an expansion of t/J and
Jxy/J (which is also small since Jxy = 2t). On the other
hand, in our case where V ∗ = V = J , the bandwidth of
the interstitial impurity is of the order of WB/t∼ t/J and
it corresponds to the process shown in fig. 2(f)-(h). States
such as those of figs. 2(f) and (h) are connected by second-
order degenerate perturbation theory processes where the
states shown in fig. 2(g) are included as intermediate
states. Namely, the interstitial impurity at site A takes
advantage of a pair “pseudo-spin” flip near it, as in
fig. 2(g), and hops to site B as shown in fig. 2(h).
We also carried out a diagonalization in a space which

includes the 17 states of the type shown in fig. 2(f-h) and

(a) (b) (c) (e)(d)

(f) (g) (h)

D D
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D C D C D C
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Fig. 2: The substitutional impurity moves by means of the 4th-
order process (a)-(e). The interstitial impurity moves via the
2nd-order process (f)-(h). The impurity, bosonic atoms, and
empty interstitial sites are denoted as gray solid, black solid,
and open circles, respectively.
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Fig. 3: The bandwidth of the substitutional and interstitial
impurity bands as a function of J/t.

their translations through the square lattice. We found
the dispersion indicated with the dashed lines in fig. 1.
The bandwidth of the impurity as calculated both by
solving Dyson’s eqs. (7) and by the variational approach
is shown in fig. 3 as a function of J/t. Notice that the
interstitial band (fig. 1) and bandwidth agree very well
with those obtained from Dyson’s equations. The solid line
and dashed line are fits to WB/t=B(t/J) and WA/t=
A(t/J)3, respectively, with A�B � 1.
Now, let us turn our discussion to the real case of 3He

impurities in solid 4He. The form for the bandwidth of the
substitutional impurity, i.e., WA ∼ t(t/J)3 (when we take
t∼ tb and V ∗ ∼ V ), is also valid on the triangular and hcp
lattices; namely, when the substitutional band is filled,
in order for the atoms to move, the same fourth-order
process, where the atoms momentarily hop to interstitial
positions, is necessary. In NMR [15] studies tunneling
rates were found to be of the order of 1MHz. Using
our calculated form for the bandwidth WA =At(t/J)

3,
and taking t= 1K and J = 30K, we findWA ∼ 4× 10−5K
(i.e., 1MHz). Using our form for the bandwidth for
interstitial impuritiesWB =Bt

2/J and the same value of t
and J we findWB ∼ 40mK. Hence, the present theory can
reproduce (a) the NMR [15] results, (b) that substitutional
quasiparticles might be localized [11] is solid 4He, and
(c) it suggests that interstitial impuritons might move

36002-p3
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coherently near the above temperature scale. However, as
we discuss below, interstitial impurities bind with defects.
For the case of interstitial 4He atoms, using our result

for the bandwidth, W = dJ2xy/2J (and Jxy ∼ 2t), and
the values of the parameters discussed in the previous
paragraph, we find W ∼ 200mK. This is the temperature
scale where the possible supersolidity of 4He has been
observed [1]. In the case of real solid 4He nearest-neighbor
empty interstitial sites are much closer to one another
than occupied sites and, in addition, an interstitial atom
has higher energy than a substitutional atom and there-
fore faces a lower potential barrier to tunnel to another
interstitial site. These two factors increase the tunneling
frequency by several orders of magnitude relative to the
observed frequency [15] for substitutional sites. However,
a finite energy is needed in order to promote atoms to
the interstitial band [16] and, in addition, vacancies and
interstitials have a tendency to phase separate in an
equilibrated crystal [17]. On the other hand, inhomo-
geneities provided by 3He impurities during the 4He solid
nucleation process or by a relatively fast inhomogeneous
cooling process can create such interstitial atoms as
discussed next.
As already discussed, the model studied in this paper

is very similar to the t-J model used to understand
quantum antiferromagnets, where the impurity degrees of
freedom in our case map to the holes in the t-J model
and the hopping of the bosonic atoms maps to the spin
degrees of freedom. In the case of the t-J model on the
square lattice, when a finite density of holes is introduced
the ground state may have stripe-order [18], where the
stripes are hole-rich and the domains between stripes are
antiferromagnetically ordered (quantum solid domains)
with a π-phase shift between domains. As we will argue
below, a similar phenomenon should be expected to occur
in the case of an hcp lattice of bosons with impurities.
Namely, edge-dislocations or disclination lines such as
those shown in fig. 4 might be created during the process
of solid 4He growth from the liquid phase.
First, it is known that the inhomogeneous nucleation

of solid 4He starts on the cell walls [19]. We will assume
that solid 4He grows layer by layer on the surface of the
cell for the following reasons: a) The geometry of the cells
used in the experiments [1,20] is characterized by a large
surface with small distances between large confining walls.
b) The cooling of the solid is caused through cooling of
these large surfaces, therefore atoms near the surface will
get cold first. c) Helium atoms at temperature T ∼ 1K get
adsorbed on the surface of most substrates because of a
relatively strong dipolar interaction with the surface [21].
In studies of 4He on graphite [22,23] for example and in all
known substrates the first layer of adsorbed 4He is solid.
The second layer of 4He on the graphite surface is also solid
at layer completion density [22,24]. After the first or a few
layers are deposited on the surface, the adsorbed solid 4He
layer is compressed relative to the liquid in contact and,
therefore, the coated surface provides a stronger attractive

A

A

1

2

B

B

C

C

D

D

E

E
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2
2

1 1
1

22
d

urms

Fig. 4: Edge-dislocations or disclination lines form as the
4He solid grows on the cell surface (bottom plane). The top
(dashed) plane indicates the solid/liquid interface. We imagine
that the solid grows layer by layer. Because the interface is two-
dimensional, dislocations and disclinations might be expected
to appear during a relatively fast cooling process at any given
layer. In addition, the impurities present in the liquid bind very
quickly to such point defects. The point defects of the next layer
more or less line up with those of the previous layer (otherwise
it is energetically very costly). Therefore, these defects become
lines of defects as shown in the above figure. When the average
distance between such defects is smaller than the length urms
which characterizes the wandering of each defect line, the
defect-lines can entangle (such as the lines C1C2, D1D2 and
E1E2) and can produce a topological glass phase.

potential for an atom as compared to that provided by
its surrounding atoms in the liquid; thus, the atoms tend
to get adsorbed and form a new solid layer. Nucleation
of solid 4He had been a puzzle in the past just because
of the large surface energy cost required in homogeneous
nucleation [19]. In a layer-by-layer growth this is not an
issue, because when the next layer is deposited, there is no
additional surface area introduced, namely, just the same-
size interface advances.
It is believed [25] that the solid/liquid interface in

the presence of 3He impurities becomes rough due to
binding of such impurities to the interface. Even an
extremely low impurity concentration, namely as low
as 1 ppm, has a significant effect in this process [25]. In
this paper, it is proposed that the 3He impurities bind
to defects [26], namely to dislocations or disclinations,
which are expected to form on the two-dimensional
solid/liquid interface [27]. There are various theories
of two-dimensional melting [28], the most popular of
which is the theory of Halperin, Nelson and Young [27]
which was inspired by the Kosterlitz-Thouless (KT)
theory of vortices in superfluid films. According to
this theory, the melting proceeds via two continu-
ous KT transitions, the lowest-temperature one caused
by the unbinding of dislocations and a higher-temperature
transition caused by the unbinding of disclinations.
Both types of defects are point-like singularities; the
former corresponds to the singular behavior of the atomic
lattice displacement field and the latter is associated
with the singular behavior of the angle field θ(�r) which
characterizes the fluctuations in the bond orientational
order. Our following analysis applies equally to both
types of defects and, therefore, we will use the term defect

36002-p4
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in general. As the solid/liquid interface is cooled down
at a relatively fast rate, locally small-size 2D clusters of
atoms at the solid/liquid interface achieve local crystalline
order rather quickly; however, the time scale to achieve a
global equilibrium is much longer because these clusters
may have different orientations. In order to describe the
state of this globally disordered but locally ordered 2D
system, we need to imagine the presence of dislocations
(or disclinations). Generally, as a 2D disordered solid is
cooled down to low temperature, pairs of such thermally
created excitations having opposite topological charge
move very slowly towards each other and are annihilated
(or bind). However, the 3He impurities which are present
in the liquid find it energetically favorable to bind to
these defects and the combined impurity/defect system
becomes stable. Furthermore, it becomes energetically
favorable for these lattice defects of the next deposited
solid layer to follow the positions of the defects on
the previous layer, thus, defect-lines are formed as the
interface advances; namely, lines of singularities grow
perpendicular to the interface (see fig. 4).
The root-mean-square projection urms of the end-to-

end vector of a defect-line is given as [29] urms =
√〈u2〉=

(2πkBTd/ε)
1/2, where d is the thickness of the solid film

and ε is the line tension along the defect-line. When urms
is a few times greater than the average distance between
such defects, neighboring defect-lines will entangle. Taking
T ∼ 1K and ε∼ 10K/Å and d= 0.3mm we find that
urms ∼ 103 Å which is greater than the average distance
between impurities and, thus, entanglement seems likely.
When the solid is cooled to low temperature, defects
with opposite topological charge cannot be mutually
annihilated because the entangled defects cannot move.
The entanglement is topologically protected and this
could create a topological glass state of solid 4He. This
is analogous to the vortex-glass state proposed for super-
conductors [30,31].
As discussed earlier, 3He impurities, even at concen-

trations as low as 1 ppm, influence very significantly the
solid 4He nucleation process [25]. In particular even such
very small amount of impurities can change the rough-
ening transition temperature [25] by 20%. This has been
interpreted as the result of 3He impurity adsorption at
the liquid-to-solid interface. As discussed such impuri-
ties stabilize the defects and as the interface advances
defect-lines form which may entangle and this can influ-
ence significantly the roughening transition. Therefore, it
is possible that the 3He impurities, through the creation of
such defects, promote 4He atoms to the interstitial band
which can move from domain to domain and by means
of the entangled defects. This creates a metastable disor-
dered supersolid in which the carriers flow through a topo-
logical glass of entangled defect-lines. This scenario might
explain the observed hysteresis [2] by annealing of the solid
helium sample. Most recently, Rittner and Reppy [20] have
observed very high superfluid response in their torsional
oscillator experiments of solid 4He samples grown from

the liquid phase by very rapid cooling. Furthermore,
these samples have high surface-to-volume ratio and high
concentration of such defects is expected to occur under
such conditions. Namely, under rapid cooling such defects
are expected to occur in the 2D solid/liquid interface,
because, the atoms order locally to form a microscopic-size
solid very quickly, but the time scale for the annihilation of
pair of defects of opposite topological charge is very long,
namely much longer than the time required to establish
local (i.e., at a microscopic scale) equilibrium. Once these
defect-lines are formed, they wander around as shown in
fig. 4 and they may entangle around each other several
times because of their high density. The process of anni-
hilation of these defects is then very difficult because of
their entanglement and this may leads to an extremely
long-lived topological glass phase.
Experimentally, while the critical temperature Tc

increases with increasing 3He impurity concentration
x3, for the superfluid response ρs there is an optimum
x3 above which ρs decreases with increasing x3. This
behavior is consistent with the theory presented here. The
degree of inhomogeneity is proportional to the density
of defects which is also proportional to the impurity
concentration x3. The carrier density, namely the density
of interstitial atoms, increases with x3, therefore, Tc is
expected to increase with x3. Since Tc is more or less a
locally determined quantity, the effect of global disorder
on Tc is much less important than the fact that the
number of carriers rise with disorder. The superfluid
response, however, is expected to depend strongly on
phase fluctuations of the superfluid order parameter,
therefore, disorder is expected to have harmful effects to
the long-range coherence. In summary, it is reasonable to
expect that at high concentration of such 3He impurities,
the disorder which is caused by the lattice defects should
significantly harm the long-range coherence; however,
Tc may continue to rise because, while the long-range
disorder does not significantly influence the value of
Tc, Tc increases due to the increase of the number of
carriers.
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