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Abstract – We investigate the effect of permeant flow on the sedimentation of porous fractal-
aggregates in water. Our theoretical analysis gives explicit calculations on the scaling behaviours
of settling velocities, taking into account the fractality through a proper permeability for fractal
aggregates. The calculated results for the scaling behaviours of settling velocities fit remarkably
well with experimental data. The analytic expression for the settling velocity provides a criterion
for determining fractal dimensions Df of aggregates from sedimentation experiments.
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Introduction. – The transport process of aggregates
generated in fluids has been the subject of numerous stud-
ies ranging from basic to applied sciences [1], including
biophysics [2]. The scaling relation between settling veloc-
ities ua and sizes a of aggregates such as ua ∼ aβ has been
confirmed by settling experiments under the gravitational
force [3–8]. In some cases, fractal dimensions Df obtained
by using Stokes’ law ua ∼∆ρ(a)a2 are in agreement with
those determined by direct observations [9]. We need,
however, caution when applying Stokes’ law to permeable
porous fractal-systems since it is in principle applicable
to impermeable systems. Many theoretical attempts have
been made to elucidate the interior flow of fractal aggre-
gates [10–16]. Most of works have treated the hydraulic
permeability as a function of the porosity P , ignoring the
characteristics of fractal structures.
In this letter, Brinkman equations are employed to

obtain the analytic expression for the settling process of
fractal aggregates in water. According to the close analogy
between the electrical conductance and the fluid flow in
porous fractal-media, we consider the effect of permeant
flow through connected (backbone) channels in aggregates
on the settling velocity. Our analysis gives theoretical
foundation that the scaling relation between the settling
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velocities and the sizes of aggregates holds. In addition, we
demonstrate that Stokes’ law is applicable under certain
circumstances to derive fractal dimensions of aggregates
generated in water.

Theoretical analysis. – A feature of settling of aggre-
gates is that streamlines traverse porous aggregates. The
Brinkman equations are established to describe the perme-
ant flow [17], where the porosity-dependent permeability k
is introduced for describing the permeant flow in a spher-
ical aggregate of radius a. The Brinkman equations are
given by the following set of equations:

∇pi = µ∇2ui− µ

k
(ui−ua) ; r� a,

∇·ui = 0, (1)

where pi denotes the pressure, ui the velocity of fluid
inside an aggregate, ua the velocity of the aggregate, µ
the kinetic viscosity of a fluid, respectively. The governing
equation for the flow outside of an aggregate is given
by Stokes equations, ∇po = µ∇2uo; r� a, and ∇·uo = 0,
where the subscripts o defines outside an aggregate. The
vorticity is defined aswi =∇×ui,wo =∇×uo inside and
outside of an aggregate, respectively. For convenience, we
formulate the problem in spherical coordinates [r, θ, ϕ].
Since the flow is axial-symmetric, the fluid velocity in
the ϕ direction is zero. Furthermore, we introduce the
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conventional stream functions [18] defined by

ur =
1

r2 sin θ

∂ψ

∂θ
,

uθ =− 1

r sin θ

∂ψ

∂r
.

(2)

These expressions describe the behaviour of the flow of
water inside and outside the aggregate.
The boundary conditions imposed are: i) the fluid

velocity is zero far from the aggregate (r→∞), ii) the
normal and tangential components of the velocity vector
and stress tensor are continuous at the outer boundary
of the porous aggregate (r→ a), and iii) the normal
and tangential components of the velocity vector on the
surface of the primary particle at the center (r→ a0) are
equal to that of the aggregate ua (no slip condition).
These can be expressed such as uo |r→∞= 0,uo |r→a=
ui |r→a, ∂(uo) |r→a= ∂(ui) |r→a, and ui |r→a0= ua, where
∂ means the space partial of the velocity. Assuming that
the permeability k varies slowly and that the velocity of
the aggregate has only the vertical component uaẑ, the
solutions to stream functions under the above boundary
conditions are obtained as

ψi =
kua sin

2 θ

2

1

ξ

[
3 (1+ ξ)

− cosh ξ+sinh ξ
coth ξ1+ ξ2 sinh ξ1

+ ξ3
]
,

ψo =
kua sin

2 θ

2

1

ξ

×
[
3

(
1− ξ2

2
+
ξ21
2

)(
ξ2+tanh ξ1
1+ ξ2 tanh ξ1

+ ξ1

)
− ξ31
]
, (3)

where ξ = r/
√
k, ξ1 = a/

√
k, and ξ2 = a0/

√
k, respectively.

With the use of eq. (3), the drag force, Fd, exerted by
the fluid on the aggregate can be calculated by integrating
the stress over the surface of the aggregate,

Fd =−6πµuaa+6πµua
√
k
(
a0+

√
k tanh

(
a/
√
k
))

a0 tanh
(
a/
√
k
)
+
√
k

.

(4)
Equation (4) is a modification of Stokes’ law for a porous
aggregate. In it, for an isolated particle (k→∞), the
correction factor approaches the value a0, indicating that
the drag force Fd can be negligible for such a small particle.
The settling velocity is calculated from a force balance.

There are three forces, gravity (Fg), buoyant (Fb), and
drag (Fd), acting upon an aggregate. The sum of the
gravity and buoyant forces equals the drag force Fd such
as Fg −Fb = Fd. If all particles constituting an aggregate
have the same density ρa, and the suspending water
density is ρl, the drag force can be expressed by

Fd =
4π

3
a3(ρa− ρl)g= 4π

3
a3(1−P )∆ρg, (5)

where P is the aggregate porosity and ∆ρ is the difference
of mass densities between a primary particle and fluid.
Using eqs. (4) and (5), we obtain the modified Stokes law
given by

ua = −2a
2g(1−P )∆ρ
9µ

×
aa0 tanh

(
a/
√
k
)
+
√
ka

√
k(a0− a)+ (k− aa0) tanh

(
a/
√
k
) . (6)

Here the hydraulic permeability k is a key parameter to
describe the permeant flow in porous fractal-aggregates.
For impermeable spherical aggregates, the settling velocity
is proportional to the aggregate cross-section a2 according
to Stokes’ law, but permeable aggregates show different
behaviours as demonstrated experimentally [3–8].

Fractality of aggregates. – For a fractal aggregate
with the fractal dimension Df , the scaling law between
the aggregate size a and the total mass M holds for [19]

M ∼N ∼ aDf , (7)

where N is the number of primary particles forming the
aggregate. As a consequence of the fractal geometry of
aggregates, we have from eq. (7) the following relation for
the porosity:

1−P = Nv0

Va
= (1−P0)

(
a

a0

)Df−3
, (8)

where vo and Va are the volumes of a single particle and
an aggregate, respectively, and P0 is defined as a porosity
at a= a0, namely, P0 = 0.
Numerous theoretical works have been made by suppos-

ing constant permeabilities. However, this assumption is
obviously unreasonable for fractal aggregates, because the
permeability k should reflect the fractality of aggregates.
Some considerations can be made according to the dimen-
sion analysis. The permeability of aggregates has to satisfy
the following extreme conditions: i) a completely porous
aggregate (P = 1) indicates full-of-fluid flow in the aggre-
gate, and the permeability will tend to infinity, ii) the
permeability should have a critical value kc(Pc), below
which the permeability should equal to zero reflecting
non-transparent situations, and iii) the permeability crit-
ical exponent t should be defined through the relation
k∼ (P −Pc)t since we can map the problem exactly onto
that of the electrical conduction problem, with the electri-
cal current density replacing the fluid current density, and
electrical field replacing the fluid pressure gradient [20].
Thus, we can define the permeability exponent t as the
conductivity exponent.
We should note that the flow through aggregates occurs

via the connected (backbone) channels of the fractal aggre-
gates, and dead ends attached to the channels carry no
fluid flow [20]. The situation is identical to the problem
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of electrical conductance through fractal networks, where
only connected (backbone) channels contribute to the elec-
trical conductance. Thus, the fluid flow traverses only
along connected backbone-channels in fractal aggregates.
Actually, we can view our fractal aggregates as composites
consisting of solid and fluid components, which are identi-
cal to the case of percolative metal/insulator composites;
namely, we can relate to the conductivity problem for such
systems. From these considerations i)-iii), we can express
the criticality of the permeability as

k= d2
(P −Pc)t
1−P , P � Pc, (9)

where d is a characteristic length scale and t is the
conductivity exponent, respectively.
Attempts have been made to obtain approximate

expressions for the permeability k [10–17,21]. Among
these, the expression obtained by Brinkman [17] for
swarms of particles only satisfies three conditions i)-iii)
for the permeability k mentioned below eq. (8). This is
given by

k=
1

18
a20

(
−3
√

8

1−P − 3+
4

1−P +3
)
. (10)

At first glance, this equation seems not to satisfy the
conditions i)-iii) for k. In addition, eq. (6) combined with
eq. (10) seems not to recover the scaling relation observed
experimentally. We have found, however, that eq. (10) can
be expanded in a power series at Pc = 1/3 such that

k =
a20
1−P

[
1

6
(P −Pc)2+ 1

12
(P −Pc)3

+
1

12
(P −Pc)4+ . . .

]
. (11)

We should note that the leading term in eq. (11) behaves
at around Pc = 1/3 such as

k=
a20(P −Pc)2
6(1−P ) . (12)

Comparing eqs. (9) and (12), we realize that our hypoth-
esis eq. (9) is quite reasonable by putting d2 ≈ a20/6.
Equation (12) indicates the conductivity exponent to
be t= 2. In addition, we should note that the effec-
tive medium approximation (EMA) by Bruggeman [22,23]
predicts Pc = 1/D, where D is the Euclidean dimensional-
ity and t= 1 for percolative metal-insulator composites. It
is remarkable that eq. (11) is expanded around the value
Pc = 1/3, the same as Bruggeman’s Pc = 1/D.

Comparisons with experiments. – Many experi-
ments have been performed on the sedimentation of frac-
tal aggregates [3–8]. For instance, the experiments made
by Johnson et al. [5] have used aggregates generated from
latex microspheres about several hundreds µm in diameter

with a density of 1.05 cm−3. Microspheres (2.5% suspen-
sion in weight) were coagulated in NaCl solutions. They
employed three kinds of aggregates with fractal dimensions
Df = 1.79, 2.19, and 2.25, respectively, in which the frac-
tal dimensions were derived from the direct observation
of size-weight relationship [5]. We use these parameters
to compare our numerical results with experimental data
on settling velocities of fractal aggregates. It should be
noted that these values of the fractal dimension Df are
close to those of fractal aggregates generated by diffusion-
limited cluster-cluster process (DLCA) (Df ≈ 1.78) and
the value of the reaction-limited cluster-cluster process
(RLCA) (Df ≈ 2.1) [24].
We should consider the effect of pressure gradient for the

formation of aggregates in water due to the gravitational
force. There is a possibility to form vertically directed
(anisotropic) aggregates under gravitational force. If this
is the case, a different value of the conductivity expo-
nent t from that of equilibrium isotropic aggregates is
required [25]. About this point, the settling velocities
of fractal aggregates in water are proportional to the
difference of mass densities between aggregates and water
∆ρ(a) = ρa− ρl. The aggregates we are interested in have
the mass densities close to that of water, so ∆ρ takes
very small values between 0.1 and 0.01 g/cm3. This indi-
cates that settling velocities of aggregates are quite small.
In fact, the observed settling velocities range from 0.5 to
0.01 cm/s. This indicates that we can neglect the gravita-
tion effect to the formation of aggregates in water, imply-
ing that it is sufficient to take into account the exponent t
for isotropic and equilibrium aggregates. However, within
our knowledge, there is no theoretical prediction on the
value of the conductivity exponent t for fractal aggregates
though the spectral dimensions ds are obtained for DLCA
and RLCA [26]. So, we employ the known values of the
conductivity exponents of t for our aggregates from D= 2
percolation network ofDf = 1.89 . . . andD= 3 percolation
network ofDf = 2.48 . . . , since these values ofDf are close
each other. Namely, we compare numerical results with
experimental data on settling velocities of fractal aggre-
gates by taking t= 1.264 for the aggregate of Df = 1.79
and t= 1.867 for the aggregate of Df = 2.19 and 2.25,
respectively [27].
Numerical and experimental results are given in fig. 1

in terms of a log-log scale because we are only interested
in the power law behaviour of the settling processes.
Actually, the absolute value of the calculated settling
velocity is still slower than the experiment data. It will be
seen from fig. 1 that a good agreement is obtained between
our calculations and experiments, in particular, for dense
systems such as Df > 2. Further details are displayed in
table 1 in which numerical results based on eqs. (6) and (9)
are listed.
We should emphasize that dense aggregates withDf > 2

correspond to low permeable cases of k� a2, where the
fluid mainly flows via the outer region of aggregates. Using
the approximation of tanh(a/

√
k)≈ 1 for k� a2 in eq. (6),
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Experimental Data
Guide to the Eye
Theory

Experimental Data
Guide to the Eye
Theory

Experimental Data
Guide to the Eye
Theory

Fig. 1: Settling velocities of aggregates vs. aggregate sizes.
The scatters are experimental data taken from ref. [5]. The
dashed lines are fitted to experimental data for a guide to the
eye. The solid lines are the calculated results according to our
theory (eq. (9)) for the cases of (a) Df = 1.79, (b) Df = 2.19,
(c) Df = 2.25, respectively. The absolute values of velocities
are omitted to give prominence to the power law.

Table 1: The scaling relation ua ∼ aβ between settling veloc-
ities and sizes of aggregates. Comparisons are made between
experiments [5] and our theory taking fractal dimensions Df
as a parameter.

Df (Exper) β (Exper) β (Theory)

1.79 1.04± 0.10 0.78
2.19 1.20± 0.11 1.19
2.25 1.33± 0.10 1.25

we have the expression for the scaling relation of the form

ua ∼ aDf−1, for k� a2. (13)

Thus, we can derive fractal dimensions Df of aggregates
using eq. (13) for low permeable cases, from which the
fractal dimensions are obtained as Df = 2.04, 2.20, and
2.33 for three kinds of aggregates used in experiments.
These fractal dimensions Df are in agreement with Df ’s
obtained from direct observations, especially for desnse
systems Df > 2.

Conclusions. – We have made a theoretical study
about the settling process of aggregates generated in
water. Our calculated results on settling velocities clearly
show the scaling relation ua ∼ aβ between settling veloc-
ities and sizes of aggregates and fit remarkably well with
experimental data. The analytic expression for the settling
velocity provides a criterion for determining fractal dimen-
sions Df of aggregates from sedimentation experiments.
The procedure proposed in this letter can be used to char-
acterize the interior fluid flow even in other types of porous
media.
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