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Abstract – In mesoscopic two-gap superconductors with sizes of the order of the coherence length
noncomposite vortices are found to be thermodynamically stable in a large domain of the T -H
phase diagram. In these phases the vortex cores of one condensate are spatially separated from
the other condensate ones, and their respective distributions can adopt distinct symmetries. The
appearance of these vortex phases is caused by a non-negligible effect of the boundary of the
sample on the superconducting order parameter and represents therefore a genuine mesoscopic
effect. For low values of interband Josephson coupling vortex patterns with L1 �=L2 can arise in
addition to the phases with L1 =L2, where L1 and L2 are total vorticities in the two condensates.
The calculations show that noncomposite vortices could be observed in thin mesoscopic samples
of MgB2.

Copyright c© EPLA, 2007

Two-gap superconductivity started to attract much
attention in connection with the discovery of the MgB2
superconductor, for which a clear-cut evidence for the
existence of two gaps was obtained [1]. Superconductors
of this kind show new qualitative effects with respect
to conventional ones. First, the presence of two or more
electronic bands at the Fermi level always enhances
the superconductivity as compared to the effect from
any individual band. Second, a new phenomenon, the
fractionalization of the magnetic flux associated to
individual vortices in massive two-gap superconductors is
predicted [2,3]. The condition for this fractionalization is
the inequality of the winding numbers of the vortices in
the two condensates (L1 �=L2) having a common vortex
core (composite vortices). Although these vortex phases
have finite energies per unit length they never correspond
to the ground state, i.e. are thermodynamically unsta-
ble [2,3]. On the other hand, the energy per unit length
of a vortex configuration where the vortices in each of the
two bands are spatially separated (noncomposite or decon-
fined vortices) was found to be divergent [2]. These results
are in line with the fact that only composite vortices
with L1 =L2 = 1, i.e. usual Abrikosov vortices, have been
observed in massive two-gap superconductors to date.
Fractionalization of the vortex magnetic flux can also

be observed in layered superconductors through thermal

fluctuations [4]. By the action of the interlayer Josephson
coupling and the magnetic field, pancake vortices (which
individually live inside one layer) align themselves into
vortex stacks which thread across the layers. Since each
pancake vortex carries only ≈Φ0/Nl (where Nl is the
number of layers) the dissociation of a vortex stack results
in a net fraction of the flux quantum. This mechanism is
however different from the one in a multigap superconduc-
tor where a fractional flux vortex lives within one conden-
sate but threads through the entire sample thickness.
In mesoscopic superconductors, the geometry of the

confinement of the superconducting condensate influences
essentially their properties because the coherence length,
ξ(T ), and the penetration length, λ(T ), become of the
order of the samples size (for a review, see, e.g., [5,6]).
In particular, new vortex patterns arise as a function
of boundary geometry leading to cusp-like normal-
superconducting phase boundary, Tc(H) [6,7], and to the
nucleation of giant vortices in disks [8,9] and of antivortices
in regular polygons [6,10]. Another important mesoscopic
effect is that the vortices nucleate in patterns which are
quite different from an Abrikosov lattice and approach the
latter by a series of phase transitions when temperature
is lowered from Tc(H) [9,11]. The symmetry of nucleated
vortex patterns is always consistent with the geometry of
the boundary of the sample [6], while the region of their
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stability against Abrikosov-type vortices increases with
diminishing size of the sample, persisting down to T = 0
when the samples reach some critical size [11].
In this letter we investigate the vortex patterns in thin

mesoscopic two-gap superconductors. Contrary to what
was found in the case of massive superconductors, we show
that noncomposite vortices can arise as thermodynami-
cally stable phases in mesoscopic samples of small enough
size. We find the reasons for their stabilization and discuss
the possibility of their experimental observation.
Consider a superconducting sample of size R and thick-

ness d in a perpendicular uniform magnetic field H. For
small (R∼ ξ) and thin (d� ξ < λ) samples one can neglect
the variation of the order parameter across thickness and
the distortion of the magnetic field induced by screening
and vortex currents1 [6,7,9]. The two components of the
order parameter Ψ1,2 [12] are found from the minimization
of the following 2D Ginzburg-Landau functional [13]:

∆F =

∫ [ 2∑
n=1

(
1

2mn

∣∣(−i�∇− 2e
c
A

)
Ψn
∣∣2)+αn|Ψn|2

+
1

2
βn|Ψn|4

)
− γ(Ψ∗1Ψ2+Ψ∗2Ψ1)

]
dS, (1)

where A is the vector potential of the applied field,
α1 =−a1t and α2 = α20− a2t are the condensation
energy parameters for the active and the passive band,
respectively, t≈ 1−T/T1, and T1 is the critical temper-
ature corresponding to the active band [13]. At the
normal/superconducting phase transition, minimizing (1)
(without the terms ∼ |Ψn|4) results in two linear equa-
tions describing the nucleation of superconductivity and
two boundary conditions:[

αn+
1

2mn

(
−i�∇− 2e

c
A

)2]
Ψn− γΨn′ = 0,

(
−i�∇− 2e

c
A

)
Ψn|n.b. = 0, (2)

where n, n′=1,2 and 2,1. The notation |n.b. means the
expression is projected on the unit vector normal to the
boundary. It is straightforward to show that the nucleation
solution of these equations has the form Ψ1 ∼Ψ2 ∼ φN ,
where φN is the solution of the eigenvalue equation:(

−i�∇− 2e
c
A

)2
φi = λiφi,(

−i�∇− 2e
c
A

)
φi|n.b. = 0, (3)

corresponding to λN (H) which is the lowest of the eigen-
values λi(H). This eigenvalue determines the nucleation

1For a thin superconductor with Ψ(r) =
√ |α|

β
f(r)eiχ(r), the

variation of the vector potential due to the supercurrent δA(r0)≈
− d
4πλ2

∫
(Φ0
2π
∇χ+A)f2(r)/|r0− r|dS ∼− dR2λ2 (

Φ0
2π
∇χ+A)f2(r0) can be

neglected if the thickness d is small enough. The same argument
can be generalized to a two-gap superconductor.

phase boundary Tc(H) [13] and the ratio of the ampli-
tudes of the two components of the order parameter,
Ψ2/Ψ1 = γ/(α2+λN/2m2). Thus the distribution of the
nucleated order parameter in the two bands of a two-gap
superconductor is described by the same function.
The eigenstates of (3) are then used as the basis set for

the order parameter of the complete functional (1),

Ψ1 =
∑
i

uiφi, Ψ2 =
∑
i

viφi, (4)

which yields ∆F as a function of the expansion coefficients
{ui, vi}.
We will consider further a disk of radius R. It is then

convenient to introduce new “lengths” defined by the
relations: −α1 = �2/2m1ξ1(T )2, α20 = �2/2m1ξ220, −α2t=
�
2/2m1ξ2(T )

2, and γ = �2/2m1ξ
2
γ . When γ = 0 and α2 > 0

the superconductivity nucleates in the active band, for
which the coherence length is ξ1. The order parameter
corresponds to one single giant vortex in the center of
the disk [8] whose winding number increases with the
applied field following the cusps on the nucleation phase
boundary line (fig. 1a). At lower temperatures it under-
goes a broken-symmetry phase transition to a multivortex
state corresponding to Abrikosov (L= 1) vortices forming
a regular polygon [9]. Since 1/ξ21 ∼ Tc−T , it follows that
the temperature region where the nucleated (giant vortex)
phase is thermodynamically stable (dark regions in fig. 1a)
scales with the size of the disk as ∼R−2. Note that for
R� 6ξ1 new broken-symmetry phases arise, which corre-
spond to off-center displacements of the central vortex in
the case L= 1 and of the maximum of |Ψ|2 distribution in
the case L= 0 [14].
In the case of nonzero interband Josephson coupling

similar phase diagrams emerge (fig. 1b). We see again
regions corresponding to giant vortex patterns (shown in
blue in fig. 1b), with the same vortex numbers in both
condensates, and regions with broken-symmetry vortex
patterns (yellow and pink regions in fig. 1b) consisting of
Abrikosov vortices. However, a qualitatively new feature
arises in the broken-symmetry phases, with two vortex
patterns, corresponding to Ψ1 and Ψ2, being spatially
distinct for any parameters of (1). Therefore each vortex
in these phases is a noncomposite vortex. Moreover, in
contrast to single band superconductors (fig. 1a), we have
now two types of multivortex phases, corresponding to
L1 =L2 (yellow regions in fig. 1b) and L1 �=L2 (pink
regions in fig. 1b). The corresponding order parameter’s
density plots are shown in fig. 2.
The temperature evolution of the vortex patterns in

two condensates is strongly dependent on the parameter
α2, while the difference in their shape increases with
diminishing γ. Indeed, as fig. 2 shows with R/ξγ(0) = 0.1,
for small values of γ we encounter three qualitatively
different situations. In the first case (a) the transition to
the broken-symmetry phase leads to a strong separation
of the multivortex patterns, corresponding to the active
(green) and the passive (red) bands, the latter approaching
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Fig. 1: Phase diagram for a thin disk of single-gap (a) and two-
gap (b) superconductors. The phase diagram (a) is parameter-
free [11], while the diagram (b) is for a1/a2 = β1/β2 =
m1/m2 = 1, R/ξ2(0) = 2

√
3 and R/ξγ(0) = 0.1. For each phase,

the vortex structure is shown schematically in black for
composite vortices and in green (active band) and red (passive
band) for noncomposite ones. The numbers inside the circles
indicate the vorticities of the giant vortex phases. Vertical
lines separate phases with different total vorticity L. Contin-
uous horizontal lines correspond to broken-symmetry phase
transitions, which are of giant vortex - multivortex type for
L> 1. The dashed line is the nucleation phase boundary for
the passive band for γ = 0 (see the text). The vertical dotted
lines mark the positions of the three graphics in fig. 2.

the first one with further lowering of temperature. In the
second case (b) the vortex pattern in the passive band
first shrinks, resulting in its strong separation from the
vortex pattern in the active band, and then approaches
it again when the temperature is lowered. Finally, the
case (c) corresponds to the transition to the broken-
symmetry phase phase with L1 �=L2, followed by the
transition to a broken-symmetry phase with L1 =L2 when
the temperature is lowered further.
The reason for the above behaviour of the order

parameter can be elucidated by the following simple
consideration [11]. Let us suppose for simplicity that only
one eigenstate of (3) (∼ φA) admixes to the nucleated
order parameter (∼ φN ) in the point of broken-symmetry
transition, which is actually a reasonable approxima-
tion for disks [9] and regular polygons [11]. When γ is
small the nucleation of superconductivity takes place at
−α1 ≈ λN/2m1. At the onset of the transition to the
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Fig. 2: (a) Evolution of the order parameter for three values
of the applied magnetic flux in the phase diagram of fig. 1b.
The background colours correspond to the giant vortex phases
(blue) and the multivortex phases with L1 =L2 (yellow)
and L1 �=L2 (pink). The expansion coefficients uL and vL
correspond to the ground state solutions of (3) for each L that
contribute substantially to the expansion. The numbers in the
corner of inserted plots gives the side of the zoom on the disk in
units of R. The increase of the intensity of colors corresponds
to the decrease of the density of the order parameters, so that
the darkest regions denote the position of the vortex cores.

broken-symmetry phase we have Ψ1 = uNφN +uAφA (φA
is supposed to be of different symmetry compared to
φN , which in the case of disk implies different rotational
quantum numbers). If α2+λN/2m2 > 0 (the sufficient
condition for this is ξ2(0)> ξ20), the minimization of (1)
gives for the expansion coefficients of Ψ2:

vi ≈ β1
β2

ξ21
ξ2γ

1
ξ21
ξ220
− ξ1(0)2
ξ2(0)2

+ m1
m2

ξ21
R2
εi
ui, (5)

where εi = λiR
2/�2 are dimensionless eigenvalues of (3),

only ξ1 is temperature dependent, and the dependence
on R is explicit. If vi and ui were related by the same
proportionality coefficient, the order parameters Ψ1 and
Ψ2 would have been described by essentially the same
function, in particular, all vortices arising in such a phase
would correspond to composite ones. Such a situation
obviously occurs in the giant vortex phase. However, as
eq. (5) shows, the transition to a broken-symmetry phase
makes the coefficients of proportionality different for the
admixed (i=A) and the nucleated (i=N) components of
the order parameter due to the term ∼ εi in the denomina-
tor of (5). This term becomes important for small values
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of R, i.e. in the mesoscopic regime, and it disappears
in the macroscopic regime R→∞. This is in line with
the conclusion mentioned in the introduction, that only
composite vortices can arise in thermodynamically stable
phases of massive two-gap superconductors.
The above analysis allows to explain the phase diagram

in fig. 1b. For large positive α2+λN/2m2 the supercon-
ductivity in the passive band is induced by the Josephson
coupling to the active band. Then the order parame-
ter and the resulting vortex pattern in the passive band
follow closely that of the active band, according to eq. (5).
However, when this quantity is small and can turn to
negative at some temperature T ∗ (shown by dashed line
in fig. 1b) then for T < T ∗ the nucleated component φN
in the passive band begins to grow much faster than in
the previous case due to the intrinsic superconductivity
which now exists in the passive band. Then two qualita-
tive situations can occur. If at T = T ∗ the superconductor
is still in the giant vortex phase, the subsequent transi-
tion to the multivortex phase in the active band will not
induce a similar order parameter in the passive band. The
latter will remain almost ∼ φN and, consequently, a much
smaller amplitude of the splitting of the giant vortex into
Abrikosov vortices is expected (fig. 2a). If at T = T ∗ the
system is already in the multivortex state, then the subse-
quent lowering of temperature will induce the shrinkage of
the vortex pattern in the passive band due to a faster stabi-
lization of the nucleated component in Ψ2. This is exactly
what is seen in fig. 2b. In both these situations a strong
spatial separation of the vortex patterns is achieved. The
existence of the vortex patterns with L1 �=L2 is merely
due to the fact that for γ = 0 the phase diagram for the
passive band is shifted upwards relative to the active one
(the nucleation of superconductivity takes place at lower
temperatures), which creates overlap regions where the
two condensates have different vorticities. If γ is smaller
than the difference of free energies corresponding to L1
and L2 in the passive band, then vortex patterns with
different vorticities in the condensates will be stabilized
also for γ �= 0, but will disappear from the phase diagram
when R/ξγ exceeds some critical value. The existence of
the overlap regions with L1 �=L2 is possible due to the fact
that the lines separating domains of different vorticity on
the diagram in fig. 1 are not vertical. As a consequence,
lowering the temperature at fixed applied flux can result
in several phase transitions with change of vorticity in the
condensates, accompanied by jumps of the order parame-
ter, i.e. of the coefficients ui and vi in eq. (4) (fig. 2c).
Finally, we calculate the T -H phase diagram for a

thin disk of MgB2 with the anisotropy axis c perpendic-
ular to the plane of the sample2 (fig. 3). Formation of
noncomposite vortices is favored by a weak interband
coupling γ and a small mass ratio m2/m1. From current
available data, the smallest γ is obtained for a sample

2This is the way in which thin MgB2 films actually grow on the
substrate.
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Fig. 3: The phase diagram for a thin disk of MgB2 with the
radius R= 70nm and the parameters taken from ref. [13,16].
The upper panels are zooms on the distribution of the order
parameter in broken-symmetry (multivortex) phases. The
conventions follow figs. 1 and 2.

of boron isotope Mg10B2 with a value reduced by 30%
from usual Mg11B2 [15], while mπ/mσ < 0.1 has been
observed in irradiated samples [16] (where the intro-
duced disorder should change effective masses but not
the coupling constants). Modifying consequently the mass
ratio in the Ginzburg-Landau parameters estimated previ-
ously for pristine MgB2 [13], we use a2/a1 = β2/β1 = 1.5,
m2/m1 = 0.07, R/ξ1(0) = 10, R/ξ20 = 8.1, R/ξγ = 6.3 and
Tc = 39K for fig. 3 [17]. We can see several regions on
the phase diagram where the two vortex patterns are well
separated in space, some of them being shown in figs. 3a-c.
The radius of the disk was taken R= 70nm but similar
separations of the vortex patterns (3–5 nm) were found for
a wide range of radii: R= 30–120 nm. We have observed
that other sets of parameters are not critical for the separa-
tion of the two vortex patterns except for the ratiom2/m1:
a smaller ratio leads to a higher separation.
The existence of noncomposite vortex patterns in two-

gap superconductors can be experimentally verified by
combining different local probe techniques [18,19]. The
discussed effects are not related to the symmetry of the
samples but arise due to the non-negligible influence of
the boundary of the sample on the two superconducting
condensates. In this sense the emergence of noncomposite
vortices found in the present study represents a true meso-
scopic effect, not observable in infinite superconductors.
We note in this connection that noncomposite vortices
could also be stabilized in ultracold atomic Fermi gases
in optical lattices or in single traps where the BCS to
Bose-Einstein condensation transition takes place. These
finite-size systems possess tunable interaction parameters
which can give rise to multiband superconductivity [20]
and are thus the subject of new promising experiments.
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