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Abstract – We investigate the classical scattering dynamics of the driven elliptical billiard. Two
fundamental scattering mechanisms are identified and employed to understand the rich behavior of
the escape rate. A long-time algebraic decay which can be tuned by varying the driving amplitude
is established. Pulsed escape rates and decelerated escaping particles are generic properties of the
harmonically breathing billiard. This suggests time-dependent billiards as prototype systems to
study the nonequilibrium evolution of classical ensembles encountering a multitude of scattering
processes off driven targets.
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Introduction. – Many models of statistical mechan-
ics can be reduced to billiard-type dynamical systems.
Seminal results like the justification of a probabilis-
tic approach to statistical mechanics [1,2] or a connec-
tion between the escape from a billiard and the famous
Riemann hypothesis [3] were obtained. Modern studies of
billiards are, among others, motivated by corresponding
experiments including ultracold atoms confined in a laser
potential [4–7], microwave billiards [8–10] or mesoscopic
quantum dots [11]. Equally for the design of directional
micro-lasers, billiards are of immediate relevance [12].
From the theoretical point of view, investigations on
the classical and quantum properties of billiards have
pioneered the fields of quantum chaos, modern semiclas-
sics and transport at the mesoscopic scale (see [8] and refs.
therein).
The escape rate, being the fraction of remaining parti-

cles as a function of time, is a characteristic of open
billiards which is both experimentally accessible and
important for transport properties [3]. This key property
allows to probe the dynamics from the outside and has
been studied thoroughly for billiards with a static bound-
ary [13–15]. Integrable systems exhibit an algebraic, while
fully chaotic billiards show an exponential decay of the
escape rate [13] (although it is known that in special
cases, like the Bunimovich stadium, there is an algebraic

(a)E-mail: lenz@physi.uni-heidelberg.de

long-time behavior in the decay, due to the slow trans-
port of particles close to the marginally stable bounc-
ing ball orbits, cf. e.g. [14]). Here we focus on the case
where the billiard shape changes in time according to a
certain law. Such a driven billiard not only leads to a
higher dimensional phase space of the scattering processes
but also to a non-conservation i.e. time-evolution of the
energy. Driven billiards represent prototype systems for
the evolution of ensembles of particles in a closed driven
environment where multiple scattering off the driven
boundary takes place thereby leading to a dynamical non-
equilibrium state. Extremely little is known on the proper-
ties of such systems, the few existing investigations dealing
with aspects such as Fermi acceleration [16–19] and prin-
cipal structures of the corresponding phase space [20–22].
In spite of the above-motivated interest escape rates of
driven billiards have not been addressed up to date. Using
atom-optical techniques such as acousto-optic deflectors or
even in the case of microwave cavities moving boundaries
are well within reach of experiment.
We investigate the classical scattering dynamics and the

time-evolution of ensembles of particles in a harmonically
driven elliptical billiard. The decay of the escape rate is
traced back to the underlying scattering mechanism by
identifying two fundamental scattering processes being
key ingredients for the time-evolution. The escape rate
behaves asymptotically as NC(t)∼ t−wC and it is shown
that the decay constant wC can be changed continuously
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Fig. 1: Phase space of the ellipse, the invariant curves are the
contour lines of F (ϕ, p) (upper part) and typical trajectories
in coordinate space (lower part).

by varying the driving amplitude C. Moreover, phenomena
such as a pulsed escape, demonstrate the richness of the
properties of driven billiards and suggest specifically the
driven ellipse as a prototype system for the nonequilibrium
evolution of ensembles that experience multiple scattering
processes with moving targets.

Fundamental properties of the dynamics in the
ellipse. – As a precursor for the driven system let
us discuss some relevant features of the static ellip-
tical billiard. The boundary B of an ellipse is given
by B= {(x(ϕ) =A cosϕ, y(ϕ) =B sinϕ)|0�ϕ< 2π} with
A>B > 0, thus A and B being the long and the short
half-diameter, respectively. The dynamics in the ellipse
is completely integrable [20], see the Poincaré surface of
section (PSS) shown in fig. 1. In addition to the energy,
there is a second constant of motion

F (ϕ, p) =
p2(1+ (1− ε2) cot2 ϕ)− ε2
1+ (1− ε2) cot2 ϕ− ε2 , (1)

restricting the orbits to invariant curves in phase space,
where ε=

√
1−B2/A2 is the eccentricity and p= cosα

(α is the angle between the tangent at the boundary and
the trajectory of the particle). F (ϕ, p) can be interpreted
as the product of the angular momenta (PAM) about the
two foci [23]. There are two different types of orbits in the
ellipse, librators and rotators, see fig. 1. Librators cross
the x-axis between the two foci and touch repeatedly a
confocal hyperbola. They possess values of F between
−ε2/(1− ε2) and zero and their motion is restricted to
a limited range of ϕ. Rotators travel around the ellipse,
eventually exploring every value of ϕ, repeatedly touching
a confocal ellipse. They have values of F between zero and
one.

Escape rate. – Let us consider the escape rate of the
static billiard by placing a small hole at the very right
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Fig. 2: Fraction of remaining particles NC(t) of the IVE as a
function of time for different values of the driving amplitude
C. The inset provides a semi-logarithmic plot.

(ϕ= 0) of the ellipse (A= 2, B = 1 in arbritrary units)
and iterating the corresponding 2D discrete mapping (for
the phase space variables ϕ and p) numerically. We employ
an ensemble of 106 particles with initial conditions being
uniform randomly distributed in ϕ, α-space. The result
is shown in fig. 2 (curve with C = 0.00). The decay
approaches a saturation value Ns(ε) which is caused by
particles traveling on librator orbits that are not connected
with the hole [5]. For ε= 0 the saturation value is zero
and it increases monotonically with increasing ε. The
analytical dependence of Ns on ε can be obtained by
determining the number of librator type particles starting
from the region bounded by the separatrix [24]

Ns(ε) =
1

π2

∫ 2π
0

dϕ arccos

√
ε2

1+ (1− ε2) cot2 ϕ . (2)

This expression is in excellent agreement with the results
of the numerical simulations. One can therefore conclude
that varying ε allows us to control the total number of
particles being emitted.

Time-dependent ellipse. – We now apply harmonic
oscillations to the boundary of the ellipse

b(ϕ, t) =

(
(A0+C sin(ωt+ δ)) cosϕ
(B0+C sin(ωt+ δ)) sinϕ

)
, (3)

C > 0 is the driving amplitude and δ is a phase shift which
will be set to zero in the following. The dynamics of the
particles is now governed by a 4D discrete mapping [20,21]:
the time and position of a particle-boundary collision is
described by the pair ϕ, t, the energy and direction of
motion by v= (vx, vy). The time tn+1 for the (n+1)-th
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Fig. 3: Fraction of remaining particles NC(t) for the HVE,
2π-oscillations of the decay are shown in the inset.

collision is determined implicitly by

(
vxn(tn+1− tn)+xn
A0+C sin(ωtn+ δ)

)2
+

(
vyn(tn+1− tn)+ yn
B0+C sin(ωtn+ δ)

)2
− 1 = 0,
(4)

where the smallest tn+1 > tn that solves (4) has to be
taken and xn = (xn, yn) is the n-th collision point. The
n+1 collision point is given by xn+1 = xn+ vn(tn+1− tn)
and ϕn+1 can be obtained by inverting (3). The veloc-
ity immediately after the collision vn+1 is described by
vn+1 = vn− 2 [n̂n+1 · (vn−un+1)] · n̂n+1, where un+1 is
the boundary velocity and n̂n+1 the inward pointing
normal vector of the collisional event occurring at time
tn+1 and position xn+1. When iterating the underlying
implicit mapping numerically the determination of tn+1
from eq. (4) requires sophisticated numerical techniques
due to many neighboring roots. As a result the correspond-
ing simulations are computationally very demanding.

Escape rates. – We focus on the escape rates of
monoenergetic ensembles consisting of 105 particles1 with
ω= 1, A0 = 2 and B0 = 1 for different values of the driving
amplitude C. Two relevant cases can be distinguished:
|v0| ≈ ωC being the intermediate-velocity ensemble (IVE)
for which the initial particle velocity is of the order of the
maximum velocity of the billiard boundary and |v0| � ωC
being the high-velocity ensemble (HVE). Naturally, it
would be also interesting to examine the case |v0| � ωC.
However, the first few collisions then accelerate the
particles to velocities |v| ≈ ωC and, after a short time,
we encounter the situation of the IVE. NC(t) of the IVE
and HVE are shown in figs. 2 and 3, respectively. In both
cases, there exists no saturation value as observed in the

1Particles start from the innermost ellipse, α is distributed
uniform randomly and v0 = v0 · (cosα, sinα), where v0 = 1 (IVE)
and v0 = 100 (HVE).

static case. A short-time exponential decay is followed by
a transient and the long-time behavior (t > 104) is to a
good approximation algebraic, NC(t)∼ t−wC , at least for
the case of the IVE (we remark that this algebraic decay
has been numerically shown to exist for much longer
times than illustrated in fig. 2). The decay constant wC
increases monotonically with increasing C (this fact is
based not only on the four values of the driving amplitude
C shown here, but on simulations carried out for 20
values of C between 0.01 and 0.30). It can be therefore
concluded that tuning the driving amplitude allows us to
control the decay constant wC in the long-time behavior
of the decay. The division of the behavior of the escape
rate into the above-mentioned regimes is even more
pronounced in the case of the HVE, see fig. 3, although
the long time tail shows substantial deviations from an
algebraic behavior.

Mechanisms for the destruction of the librator
orbits. – The saturation value Ns(ε) observed in the
static case is caused by librating orbits which are grad-
ually destroyed by the driving (3) thereby resulting in a
non-vanishing rate ṄC(t) even for large times. Rather than
trying to examine the 4D phase space (since 2D intersec-
tions or projections of this 4D space are nonrepresentative
and difficult to interpret), let us analyze the destruction of
the librator orbits as follows. Orbits (ϕ′i, p′i) in the driven
ellipse can be compared to the corresponding ones of the
static ellipse (ϕi, pi) by inspecting the angular momentum
F (ϕ, p). In contrast to the case of the static ellipse where
F (ϕi, pi) = const, ∀ i, F (ϕ′i, p′i) �= F (ϕ′j , p′j) (i �= j) in the
driven case, i.e. F is no longer a constant of motion. The
difference ∆F = Fi+1−Fi (see fig. 1) upon a collision is a
measure of whether a librator orbit approaches (∆F > 0)
the separatrix or whether it moves in phase space towards
(∆F < 0) the corresponding elliptic fixed points of the
static system. Two fundamental scattering processes can
be identified that destroy librators by changing them into
rotator orbits:

1. Vertical process: The angle of incidence of a particle
upon collision does not coincide with the reflection
angle due to momentum transfer by the moving
billiard boundary. This momentum change ∆p causes
a vertical displacement of the particle in the PSS.

2. Horizontal process: A particle that would hit the
boundary at a certain point ϕ in case of a static
billiard, hits the boundary in the driven case at ϕ′,
simply because it has moved. Here no change of
the momentum takes place. This corresponds to a
horizontal displacement ∆ϕ of the particle in the PSS.

These processes are fundamental in the sense that every
change ∆F can be decomposed into ∆F =∆Fh+∆Fv,
where ∆Fh,v denote the individual changes caused by the
horizontal, the vertical process, respectively.
In general, these effects do not appear isolated but

a combination (∆ϕ, ∆p) of both will occur at a single
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collision. The value ∆Fh,v at a single collision can be
calculated exactly [24]. The changes ∆Fh,v increase
monotonically with the driving amplitude C. Addition-
ally, ∆Fv depends monotonically on the driving frequency
ω. It is important to note that collisions occurring during
the expansion/contraction period of the ellipse always
lead to ∆Fv > 0/∆Fv < 0, whereas such a clear distinction
is not possible for ∆Fh.
For a single particle undergoing many scattering

processes, the effective change ∆Fe after a certain
time depends on the sequence of these processes, hence
∆Fe =∆F1+∆F2+ . . .+∆Fn after n collisions. When
regarding an ensemble of particles, the effective changes
(∆Fe)j (where the index j indicates the j-th particle)
after n collisions can vary significantly from particle to
particle, since the sequence of the individual ∆Fi will
vary substantially for different initial conditions which is
due to the nonlinear dynamics of the underlying discrete
mapping.

Qualitative model of the decay. – With the just
presented considerations, we can explain qualitatively the
observed escape rates and especially the disappearance
of the saturation value. Let us focus first on the HVE.
The initial fast decay (t < 5) is due to the rotator orbits
that are connected with the hole (in the PSS) and
escape very rapidly. The long-time decay (t > 10) is caused
by particles starting on librator orbits that have been
scattered through horizontal and vertical processes across
the separatrix. The closer a particles initial orbit lies near
the elliptic fixed points (of the static billiard), the longer
it takes until the effective change ∆F is large enough to
reach the separatrix (F = 0), see fig. 4. The monotonic
dependence of the ∆Fi on C explains the increasing
emission rate ṄC(t) with increasing C, since at a given
time t, the number of particles that can participate in
the decay is larger for larger values of C. The decay in the
transient region (5< t< 10) is caused by a superposition of
the tail of the initial fast exponential decay and the onset
of the slow algebraic decay. With the same arguments,
the decay of the IVE can be explained qualitatively. Since
O(v0)≈O(max(u)), the resulting changes ∆F are much
larger for the case of the IVE compared to the ones of the
HVE. This leads to a very early onset of the slow algebraic
decay and consequently the transient region is broadened.
The above presented considerations are confirmed by

the results shown in the right inset of fig. 4, where exem-
plarily the average escape time and the standard deviation
σ of the IVE (C = 0.10) as a function of the initial PAM
F (ϕ0, p0) are plotted. Particles with values of F (ϕ0, p0)
between zero and one (rotators) have approximately the
same average escape times 〈tesc〉, but the large (compared
to 〈tesc〉) standard deviation σ indicates that the indi-
vidual escape times can vary significantly from particle
to particle. The average escape time of particles starting
on librator orbits (F (ϕ0, p0)< 0) increases with decreasing
F (ϕ0, p0), since the required ∆Fe to change a librator into
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Fig. 4: Distribution ρ(|v|) of the velocity of the escaped
ensemble (HVE, C = 0.25). Left inset: the escape time vs. the
escape velocity is plotted. Right inset: average escape time of
the IVE (C = 0.10) as a function of the initial F (ϕ0, p0).

a rotator becomes larger and more and more collisions are
necessary to reach these values of ∆Fe.

Modulation of the decay. – In the inset of fig. 3,
a modulation of the escape rate with period T = 2π
can be seen, being exactly the period of the applied
driving law (3). Specifically, for t� 10, where all particles
starting on rotator orbits have already escaped, NC(t)≈
const during approximately 11/12 (empirically observed)
of one period and subsequently ṄC(t) �= 0 during a time
interval T/12 only. From this behavior it is evident that
the ellipse operates from a certain time on as a pulsed
source of particles. These repeated intervals are centered
around points tm of maximal extension of the ellipse,
tm = (4m+1)π/2, m= 2, 3, 4, . . . During the expansion
period, dominantly vertical but also horizontal processes
turn librators into rotators. The moving ellipse remains
for a comparatively long time period in the vicinity of
the extremal configuration at tm and consequently the
newly created rotators escape. Therefore, the dynamics
is effectively probed during these short time intervals
centered around tm. During the contraction period, the
librators are stabilized via vertical processes, consequently
ṄC(t)≈ 0 during 11/12 of a period T .
Escape velocities. – An astonishing feature of the

escape of the HVE is displayed in fig. 4, where the distri-
bution ρ(|v|) of the escape velocities and the correlation
of the escape time vs. the escape velocity (left inset) after
a certain time is shown for C = 0.25. There is a strong
asymmetry of ρ(|v|) around the initial velocity |v0|= 100.
Particularly, particles with tesc > 10, being originally
exclusively librators, possess escape velocities |v|< |v0|.
The origin of this behavior are vertical processes which
turn librators into rotators that subsequently escape. The
latter process however takes place during the expanding
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phase of the moving ellipse which leads exclusively to a
decrease i.e. loss of energy [25,26]. The escape velocities
of particles starting on rotator orbits lie on a serpentine
band, whose oscillations match the periodic oscillations
of the ellipse. We therefore conclude that the breathing
ellipse acts as a decelerator for particles in the HVE
regime.

Conclusion. – In conclusion, we have explored the
dynamics of a driven elliptical billiard with a focus on
the scattering mechanisms and their impact on the escape
rate. Observed phenomena such as the long-time algebraic
decay which can be tuned by varying the driving ampli-
tude, a pulsed escape rate and lowered velocities of the
escaping particles are all caused by projectiles emanat-
ing from librator orbits. They can be understood by
means of two fundamental scattering processes that turn
librating into rotating orbits. Consequently, these effects
can be further enhanced and manipulated by preparing
suitable initial ensembles. For example, a high veloc-
ity ensemble initially consisting exclusively of librators
restrains particles with an escape time t < 10 which do
not show a pulsed decay and whose escape velocities
are symmetrically distributed around the initial velocity.
It is foreseeable that the application of different driving
laws and driving modes (e.g. area-preserving oscillations)
as well as the preparation of suitable initial (thermal)
ensembles will further advance equally our understanding
as well as the phenomenology of driven nonequilibrium
systems. Driven billiards serve as prototype systems in
this respect.
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