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PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (including cosmic
pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Abstract – An inflationary scenario driven by a slow rolling homogeneous scalar field whose
potential V (Φ) is given by a generalized exponential function is discussed. Within the slow-roll
approximation we investigate some of the main predictions of the model and compare them with
current data from Cosmic Microwave Background and Large-Scale Structure observations. In
particular, we show that this single scalar field model admits a wider range of solutions than do
conventional exponential scenarios and predicts acceptable values of the scalar spectral index and
of the tensor-to-scalar ratio for the remaining number of e-folds lying in the interval N = 54± 7
and energy scales of the order of Planck scale. The running of the spectral index is briefly discussed
to show that both negative and positive values are predicted by the model here proposed.

Copyright c© EPLA, 2007

Introduction. – Theoretical developments at the
interface between high-energy physics and cosmology led,
about twenty five years ago, to a tremendous change in
our view and understanding of the early Universe, the so-
called primordial inflation [1] (see also [2–4] for a review).
Similarly to the current concept of dark energy [5], widely
used nowadays to explain present cosmic acceleration,
the idea of inflation, a period of rapid expansion of the
cosmic scale factor in the very early Universe, became the
favorite paradigm for explaining both the causal origin
of structure formation and the Cosmic Microwave Back-
ground (CMB) anisotropies. From the observational side,
an inflationary epoch also provides a natural explanation
of why the universe is nearly flat (Ωk � 0), as evidenced
by the combination of the position of the first acoustic
peak of the CMB power spectrum and the current value
of the Hubble parameter [6].
Extending our parallel with dark energy, we must

emphasize that there is also considerable freedom in
modeling the field potential responsible for the primordial
inflationary epoch. Several potentials, ranging from single
power laws, as the quartic V (Φ)∼ λΦ4 or the quadratic
chaotic V (Φ)∼m2Φ2 types, to more elaborated forms,
have been largely explored in the literature [7]. Another
simple and interesting possibility is the one given by the
usual exponential function, i.e.,

V ∝ exp (−λΦ) , (1)

(a)E-mail: alcaniz@on.br
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as originally investigated in refs. [8]. Scalar fields with
simple exponential potentials occur in fact quite generi-
cally in certain kinds of particle physics theories. Examples
extend from supergravity and superstrings theories, as the
well-studied Salam-Sezgin model [9], gravitational theories
with high derivative terms [10,11], Kaluza-Klein theories
in which extra dimensions are compactified to produce our
4-dimensional world, to many others (see [10,12] for more
details).
In this letter, we discuss a possible generalization for

the inflaton potential (1), given by

V ∝ exp1−β (−λΦ) , (2)

where the generalized exponential function above, defined
as [13]

exp1−β (f) = [1+βf ]
1/β
, (3)

for

{
1+βf > 0
exp1−β(f) = 0, otherwise,

satisfies, while f , g < 0, the following identities:

exp1−β [ln1−β(f)] = f

and

ln1−β(f)+ ln1−β(g) = ln1−β(fg)−β [ln1−β(f) ln1−β(g)] ,
where ln1−β(f) = (fβ − 1)/β is the generalized logarith-
mic function1. As the real index β→ 0, all the expressions
1A dark energy scenario derived from these generalized functions

was recently discussed in ref. [14].
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Fig. 1: a) The potential V (Φ) as a function of the field (eq. (2)) for some selected values of the parameter β.
b) Spectral index ns as a function of the parameter β for selected values of the number of e-folds ranging the
interval N = 54± 7 and λ= 0.2. Note that, for a large interval of β (including positive and negative values), the
model’s predictions are in agreement with current bounds from CMB+LSS data, i.e., ns = 0.967

+0.022
−0.020 (95.4% c.l.) [19]

(shadowed area). c) The same as in (b) for λ= 0.1.

following eq. (3) reproduce the usual exponential
and logarithmic properties, so that the potential (2) is a
direct generalization of the usual exponential function (1)
∀ β �= 0. For the sake of completeness, we show in
fig. 1(a) the behavior of the generalized potential (2) as
a function of the field Φ. Note that, while ∀ β �= 0 the
curves show a quasi -exponential (power law) behavior,
for β = 0 the usual potential (1) is fully recovered2.
In what follows, we analyze the inflationary scenario

that arises from (2) within the slow-roll approximation.
We show that this single scalar field model admits a wider
range of solutions than conventional exponential scenarios
do, and seems to fit the current observational constraints
from CMB and Large-Scale Structure (LSS) experiments.

Slow-roll parameters. – Let us first consider a single
scalar field model whose action is given by

S =
1

2

∫
d4x
√−g

[
R− 1

2
∂µΦ∂µΦ−V (Φ)

]
(4)

(throughout this paper we work in units where the Planck
mass mpl = (8πG)

−1/2 = c= 1). In this background, the
stress-energy conservation equation for the field can be
expressed as Φ̈+ 3HΦ̇+V ′ (Φ) = 0, where dots denote
derivative with respect to time and primes with respect

2It is also worth mentioning that ∀ β �= 0 the potential (2)
constitutes another example of inverse power law potentials, much
studied in the context of late-time inflation as a dark energy
candidate (see, e.g., [15]).

to the field Φ. In the so-called slow-roll approximation,
the evolution of the field is dominated by the drag from
the cosmological expansion, so that Φ̈≈ 0 or, equivalently,
3HΦ̇+V ′ � 0. With these simplifications, the slow-roll
regime can be expressed in terms of the slow-roll para-
meters ε and η, i.e., [3,4]

ε(Φ)� 1
2

(
V ′

V

)2
, (5)

and

η(Φ)�
[
V ′′

V
− 1
2

(
V ′

V

)2]
, (6)

where H � [V (Φ)/3]1/2 is the Hubble parameter. In order
to work properly, the inflationary potential must have
a sufficiently small slope, so that V ′, V ′′	 V , which is
consistent with the approximation for ε	 1 and η	 1.
By substituting our generalized potential (2) into the

above equations, we obtain

ε(Φ) =
λ2

2

1

[1−βλΦ]2 , (7a)

and

η(Φ) =
λ2

2

1− 2β
[1−βλΦ]2 , (7b)

which reduce to the usual exponential result ε≡ η≡
constant in the limit β→ 0. From eq. (7a), differently from
the conventional result, one can also compute the value of
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the field at the end of inflation (Φe) by setting ε(Φe) = 1,
i.e.,

Φe =
1

β

[
1

λ
− 1√
2

]
, ∀ β �= 0. (8)

In order to confront our model with current observa-
tional results we first consider the spectral index, ns, and
the ratio of tensor-to-scalar perturbations, r. In terms of
the slow-roll parameters to first order, these quantities are
expressed as

ns− 1 = 2η− 4ε=−λ2 1+2β

[1−βλΦ]2 (9a)

and

r= 16ε= 8λ2
1

[1−βλΦ]2 . (9b)

with a direct relation between ns and r given by

r=
8(1−ns)
1+2β

. (10)

As expected, the above expression fully generalizes
the wellknown result for usual exponential potentials,
r= 8(1−ns) [16].
To complete the above description, we must also

calculate the number of e-folds remaining until the end of
inflation, i.e.,

N =

∫ Φ
Φe

dΦ√
2ε(Φ)

=
1

λ2

(
ΦN − βλ

2
Φ2N

)
. (11)

Finally, by combining the above expression with eqs.
(9a)-(10), we obtain the contributions of the scalar and
tensor perturbations as a function of N , so that we can
compare the model’s predictions for these quantities with
current observational limits. It is worth emphasizing that
bounds on the gravitational wave background provide
constraints on the maximum number of e-folds, i.e.,
Nmax � 60 [17]. In the subsequent discussions, however, we
consider the interval N = 54± 7, as well argued in ref. [18].
Note that, if one wants to obtain the necessary amount of
inflation, i.e., the number of e-folds into the above range,
the conditions λ2	 1 and φ< 1 are necessary, which is
also consistent with the slow-roll regime expressed in
eqs. (7).

Discussion. – Figures 1(b) and (c) show the ns-β
plane for three different values of the number of e-folds
corresponding to the range N = 54± 7 and characteristic
values of λ= 0.2 and 0.1, respectively. Note that, the
larger the energy scale the larger the positive interval
of the parameter β that is compatible with the current
bounds on ns from WMAP3 plus the Sloan Digital Sky
Survey (SDSS), i.e., ns = 0.967

+0.022
−0.020 (95.4% c.l.) [19]

(clearly an opposite dependence is also found between
the remaining number of e-folds and the positive interval
for β). Note also that, for negative values of β, a scale-
invariant spectrum (ns = 1) is possible, which seems to be
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Fig. 2: Trajectories for different values of β in the ns-r paramet-
ric space to first-order in slow-roll approximation. Note that,
regardless of the value of β, ns = 1⇒ r= 0 (eq. (10)). The shad-
owed area corresponds to the interval r� 0.3 (at 95.4% c.l.),
as given in refs. [16,19].

in agreement with the results of ref. [16] (0.93<ns < 1.01
at 95.4% c.l.). In both figures, the former bounds on ns
are represented by shadowed areas.
The ns-r plane is displayed in fig. 2 for some selected

values of the parameter β. For the portion of this plane
compatible with current bounds on r from WMAP3 plus
SDSS, i.e., r� 0.3 (at 95.4% c.l.) [16,19], a considerable
interval (which includes negative and positive values) of
β is in agreement with the current limits on ns discussed
above. Similarly to the intermediate inflationary scenario
of ref. [20] (see fig. 1 of this reference), and as expected
from our eq. (10), a Harrison-Zel’dovich spectrum (ns = 1
and r= 0) is also a prediction of this scenario regardless
of the value of β. In terms of the parameter β, note
that both the numerator and denominator of eq. (10)
approaches zero as β→−1/2 since, from eq. (9a),
β→−1/2⇒ ns→ 1.
Running of spectral index. The running of the

spectral index in inflationary models, to lowest order in
slow-roll, is given by [3]

αs ≡ dns
d ln k

=−8ε2+16εη− 2ξ2 , (12)
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Fig. 3: The αs-ns plane for some selected values of the
parameter β. As discussed in the text, for values of β in the
open interval ]0, −0.5[ the running is always positive while ∀ β
out of this interval the model’s prediction is a negative running.

where

ξ2(Φ) =−(2ε) 12 V
′′′

V
. (13)

By substituting eqs. (5), (6) and (9a) into the above
expressions, we obtain a relation between the spectral
index and its running, i.e.,

αs =−2β(ns− 1)
2

(1+2β)
. (14)

Note that the above relation has both the possibili-
ties for negative and positive running. For instance,
for values of β lying in the open negative interval
0<β <−0.5 the running is always positive (0 for
ns = 1), which seems to be disfavored by the WMAP3
data (−0.02� αs �−0.17 at 95.4% c.l.) but not ruled
out by a joint analysis involving WMAP3 and SDSS
(0.007� αs− 0.13 at 95.4% c.l.) [16] (see also [6]).
For all other values of β out of the above interval, a
prediction for a negative running is found (see fig. 3).
Note also that, for values of the spectral index ns � 1,
as indicated by current observations [16,19], all models
approach αs � 0 which, although in full agreement with
the bounds above, makes a distinction between different
scenarios difficult from the observational viewpoint.

Final remarks. – Primordial inflation constitutes one
of the best and most successful examples of physics at the
interface between particle physics and cosmology, with a
tremendous consequences on our view and understanding
of the early Universe. In this paper, we have investigated
some cosmological consequences of a new inflationary
scenario driven by a generalized exponential potential
of the type V ∼ exp1−β(−λΦ) (eq. (2)). As discussed in
the first section, this generalized potential behaves as a
simple power law for all values of β �= 0 and is an exact
exponential function for β = 0.
Within the slow-roll approximation we have calculated

the main observable quantities, such as the spectral index,
its running and the ratio of tensor-to-scalar perturbations
and shown that, even for values of the number of e-folds
in the restrictive interval N = 54± 7 [18], the predictions
of the model is in good agreement with current bounds
on these parameters from CMB and LSS observations,
as given in refs. [16,19]. Similarly to the intermediate
inflationary scenario of ref. [20], it is worth mentioning
that a scale-invariant spectrum (ns = 1) is also prediction
of the model if r= 0 (see fig. 2). We emphasize that both
possibilities for positive and negative values of the running
of the spectral index are found for different intervals of the
parameter β.
Another aspect worth emphasizing is that, differently

from pure exponential inflation, which does not have an
end, for some interval of the pair (λ, β), the exponential
potential discussed in this paper does lead to an end of
slow-roll inflation. However, it is important to investigate
if this class of models can also lead to phase of rapid oscil-
lations, necessary to reheat the Universe [21]. Although in
good agreement with current observations, we expect the
next generation of experiments, as well as more theoreti-
cal implications, to be able to decide if this β-exponential
potential is or not a viable possibility for describing
inflation.
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