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Abstract – The heavy-fermion metal CePd1−xRhx evolves from ferromagnetism at x= 0 to a non-
magnetic state at some critical concentration xc. Utilizing the quasiparticle picture and the concept
of fermion condensation quantum phase transition (FCQPT), we address the question about
non-Fermi liquid (NFL) behavior of ferromagnet CePd1−xRhx and show that it coincides with
that of both antiferromagnet YbRh2(Si0.95Ge0.05)2 and paramagnets CeRu2Si2 and CeNi2Ge2.
We conclude that the NFL behavior being independent of the peculiarities of specific alloy, is
universal, while numerous quantum critical points assumed to be responsible for the NFL behavior
of different HF metals can be well reduced to the only quantum critical point related to FCQPT.

Copyright c© EPLA, 2007

The nature of quantum criticality determining the
non-Fermi liquid (NFL) behavior observed in heavy-
fermion (HF) metals is everyday topic of the physics of
correlated electrons. A quantum critical point (QCP) can
arise by suppressing the transition temperature Tc of a
ferromagnetic (FM) (or antiferromagnetic (AFM)) phase
to zero by tuning some control parameter ζ other than
temperature, such as pressure P , magnetic field B, or
doping x as it takes place in the case of the HF ferromagnet
CePd1−xRhx [1,2] or the HF metal CeIn3−xSnx [3]. The
NFL behavior around QCPs manifests itself in various
anomalies. One of them is power in T variations of the
specific heat C(T ), thermal expansion α(T ), magnetic
susceptibility χ(T ) etc.
It is widely believed that the NFL behavior is deter-

mined by quantum phase transitions which occur at the
corresponding QCP’s. According to this concept, NFL
behavior in this case is due to the presense of thermal
and quantum fluctuations suppressing quasiparticles [4–6]
so that the quantum criticality in these systems can be
described by conventional theory related to a spin-density-
wave instability [7] or scenarios where the heavy electrons
localize at magnetic QCP’s, for example, due to a destruc-
tion of the Kondo resonance [8]. Unfortunately, up to now
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it was not possible to describe all available experimental
facts related to the NFL behavior within a single theory
based on the above scenarios.
Measurements performed on the three-dimensional

FM CePd1−xRhx show that around some concentration
x= xc � 0.87–0.9 the suppression of the FM phase occurs,
so that this alloy is tuned from ferromagnetism at x= 0
to a non-magnetic state at QCP with the critical concen-
tration xc [1,2]. At x= xc, measurements on CePd1−xRhx
show that the electronic contribution to the specific heat
C(T ) and the thermal expansion coefficient α(T ) behave
as C(T )∝ α(T )∝√T [1,9]. At the concentrations x< xc,
C(T )/T shows a peak at some temperature Tmax, while
under the application of magnetic field Tmax shifts to
higher values [2]. The above-discussed scenarios for NFL
behavior [6–8] imply that its details would in particular
depend on system’s magnetic ground state. Namely,
within these scenarios, one can assume that the NFL
peculiarities of CePd1−xRhx are to be different from those
of either CeNi2Ge2 and CeRu2Si2 exhibiting a paramag-
netic ground state [10,11] or from those of AFM cubic HF

metal CeIn3−xSnx [3] and HF metal YbRh2(Si0.95Ge0.05)2
exhibiting (in measurements of C(T )/T ) a weak AFM
ordering at T < 20mK [12]. On the other hand, the
measurements of χ(T ) have shown that the quantum criti-
cal fluctuations in this metal have a strong FM compon-
ent and thus are unique among all other quantum
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critical HF systems [13]. Obviously the critical fluctua-
tions taking place at QCPs in the different HF metals
are different so that it may seem that we cannot have a
universal behavior in these metals. Also, the above tradi-
tional scenarios have no grounds to consider these QCPs
as different manifestations of some single QCP. More-
over, the behavior of C(T )/T in YbRh2(Si0.95Ge0.05)2
is formed by AFM, fluctuations, while that of χ(T ) is
determined by FM ones. The distinctive features of FM,
AFM and paramagnetic systems suggest the intrinsic
differences in their QCPs resulting in the diversity of their
thermodynamic properties. Existing theories corroborate
this point of view, they predict that magnetic and thermal
properties of CePd1−xRhx [1,2,4–6,14] should differ from
those of YbRh2(Si0.95Ge0.05)2, since the latter substance
is suppose to combine FM and AFM orders.
Below we shall see that NFL properties of the function
C(T )/T in CePd1−xRhx coincide with those of χ(T )
in CeRu2Si2 and YbRh2(Si0.95Ge0.05)2 as well as with
those of C(T )/T in YbRh2(Si0.95Ge0.05)2. Also, the NFL
behavior of α(T ) in CePd1−xRhx coincides with that
of α(T ) in HF metals CeNi2Ge2 and CeIn3−xSnx. The
observed power laws and universal behavior of C(T ) and
α(T ) in CePd1−xRhx can be hardly accounted for within
the above scenarios when quasiparticles are suppressed,
for there is no reason to expect that C(T ), χ(T ), α(T )
and other thermodynamic quantities are affected by the
fluctuations or localization in a correlated fashion.
It might be possible to explain this universal behavior

by Landau Fermi liquid (LFL) theory based on the exis-
tence of quasiparticles since C(T )/T ∝ α(T )∝ χ(T )∝M∗
where M∗ is the effective mass. Unfortunately, the
effective mass of conventional Landau quasiparticles
is temperature, magnetic field, pressure etc. indepen-
dent [15] and this fact contradicts to the measurements
on HF metals. On the other hand, when the electronic
system of HF metals undergoes the fermion condensation
quantum phase transition (FCQPT), the fluctuations are
strongly suppressed and cannot destroy the quasiparticles
which survive down to the lowest temperatures [16–19].
In contrast to the conventional M∗, the effective mass of
these quasiparticles strongly depends on T , x, B etc. so
that we have every reason to suggest that they are indeed
responsible for the universal behavior observed in HF
metals. We note that the direct observations of quasipar-
ticles in CeCoIn5 have been reported recently [20].
In this letter we show that the NFL properties of HF

metals coincide regardless of their magnetic ground-state
properties. Namely, the NFL features observed in FM
CePd1−xRhx, in cubic AFM CeIn3−xSnx, in paramagnets
CeNi2Ge2 and CeRu2Si2 and in YbRh2(Si0.95Ge0.05)2
displaying both AFM and FM fluctuations, coincide. Our
main conclusion is that observed universal behavior is
independent of the peculiarities of the given alloy such as
its lattice structure, magnetic ground state, dimensionality
etc. so that numerous previously introduced QCPs can be
substituted by the only QCP related to FCQPT.

Fig. 1: Schematic phase diagram of the systems under consider-
ation. The control parameter ζ represents doping x, magnetic
field B, pressure P etc. ζFC denotes the point at which the
effective mass diverges. If ζ is not a magnetic field, then the
right boundary line NFL-LFL lies on the abscissa axis, see text.
Inset: normalized effective mass M∗

N (T ) =M
∗(T )/M∗

M (M
∗
M

is its maximal value at T = TM ) vs. the normalized temper-
ature TN = T/TM . Several regions are shown. First goes the
LFL regime (M∗

N (T )∼ const) at TN � 1, then the transi-
tion regime (shaded area) whereM∗

N (T ) reaches its maximum.
At elevated temperatures T−2/3 the regime given by eq. (10)
occurs followed by a T−1/2 behavior, see eq. (11).

The schematic phase diagram of the HF metals under
consideration is reported fig. 1. We show two LFL regions
(the left one being paramagnet (PM) or having long-range
magnetic order and the right one corresponds to re-entrant
LFL phase induced by a magnetic field), separated by the
NFL one. The control parameter ζ (see also above) can be
pressure P , magnetic field B, or doping x. The variation
of ζ drives the system from the LFL region to the NFL
one and then again to LFL. The caption “Magnetic field
induced LFL” means that only magnetic field can generate
the re-entrant LFL phase. If ζ is not a magnetic field, the
right LFL-NFL boundary lies on the abscissa axis.
To study the universal low-temperature features of

HF metals, we use the model of homogeneous heavy-
electron liquid with effective mass M∗(T,B, ρ), where
the number density ρ= p3F /3π

2, and pF is the Fermi
momentum [15]. This permits to avoid complications
associated with the crystalline anisotropy of solids [17].
To describe the effective mass M∗(T,B) as a function
of temperature and applied magnetic field B, when the
heavy-electron system evolves from the LFL state, we use
the Landau equation relating the effective mass M∗(T,B)
to the bare mass M and Landau interaction amplitude
F (p1,p2, ρ) [15]

1

M
=

1

M∗(T,R)
+

∫
pF
p2F

∂F (pF,p, ρ)

∂pF
n(p, T,R)

dp

(2π)3
,

(1)
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where n(p, T,R) is the quasiparticle distribution function

n(p, T,R) =
n(ξ+R)+n(ξ−R)

2
, (2)

n(ξ±R) =
{
1+ exp

[
ξ

T
±R
]}−1

, (3)

R= µBB/T . Here ξ = ε(p, T )−µ, µB is the Bohr magne-
ton, ε(p, T ) is the single-particle energy and µ stands for
a chemical potential.
We first consider the case when at T → 0 the heavy-

electron liquid behaves as LFL and is located on the
Fermi-liquid (FL) side of FCQPT (see ref. [18] for details).
Since ε(p= pF ) = µ at B→ 0, we see from eq. (3) that
n(p, T,B)→ θ(pF − p), θ(p) is the step function. In this
case eq. (1) reads [15,21]

M∗(ρ) =
M

1−N0F 1(pF , pF , ρ)/3 . (4)

Here N0 is the density of states of a free electron gas,
F 1(pF , pF , ρ) is the p-wave component of Landau ampli-
tude. LFL theory implies that the amplitude can be repre-
sented as a function of ρ only, F 1(pF , pF , ρ) = F

1(ρ). We
assume that at ρ→ ρFC, F 1(ρ) achieves some value where
the denominator tends to zero and find from eq. (4) that
the effective mass diverges as [22,23]

M∗(ρ)�A+ A1

ρFC− ρ , (5)

where A, A1 are constants and ρFC is QCP of FCQPT.
Assuming that the control parameter ζ is represented by
x and xc corresponds to ρFC, we obtain (ζFC− ζ)/ζFC =
(xc−x)/xc � (ρFC− ρ)/ρFC, while at ζ > ζFC the system
is on the fermion condensation (FC) side of FCQPT [18].
Now we consider the temperature behavior of the

effective massM∗(T ) in a zero magnetic field. Upon using
eq. (4) and introducing the function δn(p, T ) = n(p, T )−
θ(pF − p), eq. (1) takes the form

1

M∗(T )
=

1

M∗(ρ)
−
∫
pF
p2F

∂F (pF,p, ρ)

∂pF
δn(p, T )

dp

(2π)3
.

(6)

We integrate the second term on the right-hand side of
eq. (6) over the angular variable Ω, use the notation

F1(pF , p, ρ) =MpF

∫
pF
∂F (pF,p, ρ)

∂pF

dΩ

(2π)3
, (7)

and substitute the variable p by z = ξ(p)/T . Since in
HF metals the band is flat and narrow, we use the
approximation ξ(p)� pF (p− pF )/M∗(T ) and with respect
to eq. (6) finally obtain

M

M∗(T )
=
M

M∗(ρ)
−β

∞∫
0

f(1+βz)

1+ ez
dz+β

1/β∫
0

f(1−βz)
1+ ez

dz.

(8)

Here β = TM∗(T )/p2F and f(z) = F1(pF , z, ρ). The
momentum pF is defined from the relation ε(pF ) = µ.
To investigate the low-temperature behavior of M∗(T ),

we evaluate the integral (8). Going beyond the usual
approximation [24], we may obtain following final result:

M

M∗(T )
=

M

M∗(ρ)
+βf(0) ln {1+ exp(−1/β)}

+λ1β
2+λ2β

4+ . . . , (9)

where λ1 and λ2 are constants of order unity. Here the
logarithmic term is the result of an effective summa-
tion of the main nonanalytic (at T → 0) contributions,
proportional to exp(−1/β). To analyze eq. (9), we first
assume that β� 1. Then, omitting terms of the order of
exp(−1/β), we obtain that at T � TF ∼ p2F /M∗(ρ) the
sum on the right-hand side represents a T 2-correction
to M∗(ρ) and the system demonstrates the LFL behav-
ior [25]. At higher temperatures, the system enters a tran-
sition regime when the effective mass reaches its maxi-
mal value M∗M at some temperature TM . It can be easily
checked that the terms proportional to β2 and β4 in eq. (9)
are “responsible” for the maximum. The normalized effec-
tive mass M∗N (T ) =M

∗(T )/M∗M as a function of normal-
ized temperature TN = T/TM is reported in the inset to
fig. 1, showing several regimes. At TN � 1, the LFL regime
with almost constant effective mass, occurs. At TN ∼ 1 it
gives place to the transition region. At elevated temper-
atures when M/M∗(ρ)� β2, eq. (9) reads M/M∗(T )∝
T 2M∗(T )2, giving [25,26]

M∗(T )∝ T−2/3. (10)

Numerical calculations based on eqs. (8) and (9) show that
at rising temperatures the linear term ∝ β gives the main
contribution and leads to new regime when eq. (9) reads
M/M∗(T )∝ β yielding

M∗(T )∝ T−1/2. (11)

Note, that “rising temperatures” are still sufficiently low
for the expansion of integrals in eq. (8) in powers of β to be
valid. In the inset to fig. 1 both T−2/3 and T−1/2 regimes
are marked as NFL ones since the effective mass depends
strongly on temperature, which is not the case for the
transition region. If the system is located at the FCQPT
critical point, it follows from eq. (5) that M∗(ρFC)→∞
and TF → 0 making the LFL region vanish, while the
behavior of the effective mass at finite temperatures is
given by eq. (11) [27]. The application of magnetic field
restores the LFL behavior and at T = 0 the effective mass
depends on B as [26,28]

M∗(B)∝ (B−Bc0)−2/3, (12)

where Bc0 is the critical magnetic field driving both HF
metal to its magnetic field tuned QCP and corresponding
Néel temperature toward T = 0. In some cases Bc0 = 0.

47001-p3
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For example, the HF metal CeRu2Si2 is characterized
by Bc0 = 0 and shows neither evidence of the magnetic
ordering or superconductivity nor the LFL behavior down
to the lowest temperatures [11]. In our simple model Bc0 is
taken as a parameter. At elevated temperatures and fixed
magnetic field, the effective mass depends on temperature
as in the case when the system is placed on the FL
side in accordance with eqs. (10) and (11) [25,29]. Since
the magnetic field enters eq. (1) as the ratio R= µBB/T ,
at TN � 1 the behavior of the effective mass can be
described by a simple function

M∗(B, T )
M∗(B)

≈ 1+ c1R
2

1+ c2R8/3 , (13)

which represents an approximation to solutions of eq. (1)
that agrees with eqs. (10) and (12). Here R= T/[(B−
Bc0)µB ], c1 and c2 are fitting parameters. As we have
seen the effective mass reaches its maximal value M∗M at
some R=RM and we again define a normalized effective
mass as M∗N (T,B) =M

∗(T,B)/M∗M . Taking into account
eq. (13) and introducing the variable y=R/RM , we
obtain the function

M∗N (y)≈
M∗(B)
M∗M

1+ c1y
2

1+ c2y8/3
, (14)

which describes a universal behavior of the effective mass
M∗N (y) when the system transits from LFL regime to
that described by eq. (11). At ρ < ρFC, M

∗(ρ) is finite,
see eq. (5). In this case the eq. (14) is valid at TN � 1
if M∗(T,B)/M∗(ρ)� 1 because the term 1/M∗(ρ) on
the right-hand side of eq. (6) is small and can be safely
omitted [27]. As a result, the behavior of M∗N (y) has to
coincide with that of the normalized effective massM∗N (T )
displayed in the inset to fig. 1.
The effective massM∗(T,B) can be measured in experi-

ments on HF metals. For example,M∗(T,B)∝C(T )/T ∝
α(T )/T and M∗(T,B)∝ χAC(T ) where χAC(T ) is ac
magnetic susceptibility. If the corresponding measure-
ments are carried out at fixed magnetic field B (or at
fixed both the concentration x and B) then, as it follows
from eq. (13), the effective mass reaches the maximum at
some temperature TM . Upon normalizing both the effec-
tive mass by its peak value at each field B and the temper-
ature by TM , we observe that all the curves merge into a
single one, given by eq. (14), thus demonstrating a scaling
behavior.
As is seen from fig. 2, the behavior of the normalized

ac susceptibility χNAC(y) = χAC(T/TM , B)/χAC(1, B) =
M∗N (TN ) obtained in measurements on the HF paramag-
net CeRu2Si2 [11] agrees with both the approximation
given by eq. (14) and the normalized specific heat
(C(TN )/TN )/C(1) =M

∗
N (TN ) obtained in measurements

on the HF FM CePd1−xRhx [2]. It is also seen from fig. 2,
that at temperatures TN � 3, the curve given by eq. (14)
agrees perfectly with the measurements on CeRu2Si2
whose electronic system is placed at FCQPT [29], that

Fig. 2: Normalized magnetic susceptibility χN (TN , B) =
χAC(T/TM , B)/χAC(1, B) =M

∗
N (TN ) for CeRu2Si2 in

magnetic fields 0.20mT (squares), 0.39mT (upright trian-
gles) and 0.94mT (circles) against normalized temperature
TN = T/TM [11]. The susceptibility reaches its maximum
χAC(TM , B) at T = TM . The normalized specific heat
(C(TN )/TN )/C(1) of the HF ferromagnet CePd1−xRhx with
x= 0.8 vs. TN is shown by downright triangles [2]. Here
TM is the temperature at the peak of C(T )/T . The solid
curve traces the universal behavior of the normalized effective
mass determined by eq. (14), it is also shown in figs. 3, 4, 5
and 6. Parameters c1 and c2 are adjusted for χN (TN , B) at
B = 0.94mT.

is in fig. 1 at ζFC. As to the normalized specific heat
(shown by downright triangles in fig. 2) measured on
CePd1−xRhx with x= 0.8 [2], the scaling holds up to
relatively high temperatures. This is because its elec-
tronic system is located on the FL side and the deflection
(xc−x)/xc � (ρ− ρFC)/ρFC at x= 0.8 from the critical
concentration xc � 0.9 is relatively big, elongating the
T−2/3 region [27]. On the other hand, at diminishing
temperatures the scaling is ceased at relatively high
temperatures as soon as the LFL behavior related to the
deflection from xc sets in.
Now we consider the behavior of M∗N (T ), extracted

from measurements of the specific heat on CePd1−xRhx
under the application of magnetic field [2] and shown in
fig. 3. It is seen from fig. 3 that at B � 1T the value M∗N
describes the normalized specific heat almost perfectly,
coincides with that of CeRu2Si2 and is in accord with the
universal behavior of the normalized effective mass given
by eq. (14). Thus, we conclude that the thermodynamic
properties of CePd1−xRhx with x= 0.8 are determined
by quasiparticles rather than by the critical magnetic
fluctuations. On the other hand, one could expect the
growth of the critical fluctuations contribution as x→ xc
so that the behavior of the normalized effective mass would
deviate from that given by eq. (14).
In fig. 4, the effective mass M∗N (TN ) at fixed B’s is

shown. Since the curve shown by circles and extracted
from measurements at B = 0 does not exhibit any maxi-
mum down to 0.08K [2], we conclude that in this case

47001-p4
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Fig. 3: The normalized effective mass M∗
N (TN , B) extracted

from the measurements of the specific heat on CePd1−xRhx
with x= 0.8 [2]. AT B � 1T, M∗

N (TN ) coincides with that of
CeRu2Si2 (solid curve, see the caption to fig. 2).

Fig. 4: Same as in fig. 3 but x= 0.85 [2]. At B � 1T, M∗
N (TN )

demonstrates the universal behavior (solid curve, see the
caption to fig. 2).

x is very close to xc and function M
∗
N (TN ) is approxi-

mately described by eq. (11), while the maximum is shifted
to very low temperatures or even absent. As seen from
fig. 4, the application of magnetic field restores the univer-
sal behavior given by eq. (14). Again, this permits us to
conclude that thermodynamic properties of CePd1−xRhx
with x= 0.85 are determined by quasiparticles rather than
by the critical magnetic fluctuations.
The thermal expansion coefficient α(T ) is given by [24]
α(T )�M∗T/(p2FK(ρ)). The compressibility K(ρ) is not
expected to be singular at FCQPT and is approximately
constant [30]. Taking into account eq. (11), we find that
α(T )∝√T and the specific heat C(T ) = TM∗ ∝√T .
Measurements of the specific heat C(T ) on CePd1−xRhx
with x= 0.9 show a power-law temperature dependence.
It is described by the expression C(T )/T =AT−q with
q� 0.5 and A= const [1]. Hence, we conclude that the
behavior of the effective mass given by eq. (11) agrees
with experimental facts. Measurements of the thermal
expansion coefficient α(T )/T on both CePd1−xRhx with

Fig. 5: The normalized thermal expansion coefficient
(α(TN )/TN )/α(1) =M

∗
N (TN ) for CeNi2Ge2 [10] and for

CePd1−xRhx with x= 0.90 [2] vs. TN = T/TM . Data obtained
in measurements on CePd1−xRhx at B = 0 are multiplied by
some factor to adjust them in one point to the data for
CeNi2Ge2. The dashed line is a fit for the data shown by the
circles and pentagons at B = 0 and represented by the func-
tion α(T ) = c3

√
T with c3 being a fitting parameter. The solid

curve traces the universal behavior of the normalized effective
mass determined by eq. (14), see the caption to fig. 2.

x= 0.9 [1] and CeNi2Ge2 [10] are shown in fig. 5. It is
seen that the approximation α(T ) = c3

√
T is in good

agreement with the results of measurements of α(T ) in
CePd1−xRhx and CeNi2Ge2 over two decades in TN . We
note that measurements on CeIn3−xSnx with x= 0.65 [3]
demonstrate the same behavior α(T )∝√T (not shown
in fig. 5). As a result, we suggest that both CeIn3−xSnx
with x= 0.65 and CeNi2Ge2 are located at FCQPT (in
fig. 1 at ζFC) and also recollect here that CePd1−xRhx
is a three-dimensional FM [1,2], CeNi2Ge2 exhibits a
paramagnetic ground state [10] and CeIn3−xSnx is an
AFM cubic metal [3].
M∗N (TN ) extracted from measurements on the HF

metals YbRh2(Si0.95Ge0.05)2, CeRu2Si2, CePd1−xRhx
and CeNi2Ge2 is reported in fig. 6. It is seen that the
universal behavior of the effective mass given by eq. (14)
is in accord with experimental facts. YbRh2(Si0.95Ge0.05)2
is located on the FC side where the system demonstrates
the NFL behavior down to lowest temperatures [27].
In that case, ζ (see fig. 1) is represented by B and
ζFC =Bc0. In the LFL regime induced by the magnetic
field, the effective mass M∗(B)∝ (B−Bc0)−1/2 and does
not follow eq. (12) [27,29]. As a result, the range of the
scaling behavior in temperature shrinks to the transition
and T−2/3 regions, see inset to fig. 1. It is seen from fig. 6
that M∗N (TN ) shown by downright triangles and collected
on the AFM phase of YbRh2(Si0.95Ge0.05)2 [12] coincides
with that collected on the FM phase (shown by upright
triangles) of YbRh2(Si0.95Ge0.05)2 [13]. We note that in
the case of LFL theory the corresponding normalized
effective mass M∗NL � 1 is independent of both T and B.
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Fig. 6: The universal behavior of M∗
N (TN ), extracted

from χAC(T,B)/χAC(TM , B) for both YbRh2(Si0.95Ge0.05)2
and CeRu2Si2 [11,13], (C(T )/T )/(C(TM )/TM ) for both
YbRh2(Si0.95Ge0.05)2 and CePd1−xRhx with x= 0.80 [2,12],
and (α(T )/T )/(α(TM )/TM ) for CeNi2Ge2 [10]. All the
measurements are performed under the application of magnetic
field as shown in the insets. The solid curve gives the univer-
sal behavior of M∗

N determined by eq. (14), see the caption to
fig. 2.

Fig. 7: The peak temperatures Tmax(B), extracted from
measurements of C/T and χAC on YbRh2(Si0.95Ge0.05)2
[12,13] and approximated by straight lines. The lines intersect
at B � 0.03T.

The peak temperatures Tmax, where the maxima of
C(T )/T , χAC(T ) and α(T )/T occur, shift to higher
values with increase of the applied magnetic field. It
follows from eq. (14) that TM ∝ (B−Bc0)µB . In fig. 7,
Tmax(B) are shown for C/T and χAC , measured on
YbRh2(Si0.95Ge0.05)2. It is seen that both functions can
be represented by straight lines intersecting at B � 0.03 T.
This observation [12,13] as well as the measurements on
CePd1−xRhx, CeNi2Ge2 and CeRu2Si2 demonstrate the
same behavior [2,10,11].
In summary, we have shown, that bringing the differ-

ent experimental data (like C(T )/T , χac(T ), α(T )/T etc.)
collected on different HF metals (YbRh2(Si0.95Ge0.05)2,
CeRu2Si2, CePd1−xRhx, CeIn3−xSnx and CeNi2Ge2) to
the above normalized form immediately reveals their

universal scaling behavior. This is because all above exper-
imental quantities are indeed proportional to the normal-
ized effective mass. Since the effective mass determines the
thermodynamic properties, we conclude that above alloys
demonstrate the universal NFL thermodynamic behavior,
independent of the details of the HF metals such as their
lattice structure, magnetic ground state, dimensionality
etc. This conclusion implies also that numerous QCPs
assumed earlier to be responsible for the NFL behavior of
different HF metals can be well reduced to a single QCP
related to FCQPT.
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[6] v. Löhneysen H. et al., unpublished (cond-mat/
0606317).

[7] Millis A. J., Phys. Rev. B, 48 (1993) 7183.
[8] Si Q. et al., Nature, 413 (2001) 804.
[9] Shaginyan V. R., Popov K. G. and Artamonov S. A.,
JETP Lett., 85 (2007) 398.

[10] Küchler R. et al., Phys. Rev. Lett., 91 (2003) 066405.
[11] Takahashi D. et al., Phys. Rev. B, 67 (2003) 180407(R).
[12] Custers J. et al., Nature, 424 (2003) 524.
[13] Gegenwart P. et al., Phys. Rev. Lett., 94 (2005) 076402.
[14] Kirkpatrick T. R. and Belitz D., Phys. Rev. B, 67

(2003) 044419.
[15] Lifshitz E. M. and Pitaevskii L. P., Statistical Physics,

Part 2 (Butterworth-Heinemann, Oxford) 1999.
[16] Shaginyan V. R., JETP Lett., 79 (2004) 286.
[17] Shaginyan V. R. et al., Europhys. Lett., 76 (2006) 898.
[18] Amusia M. Ya. and Shaginyan V. R., Phys. Rev. B, 63

(2001) 224507.
[19] Amusia M. Ya. and Shaginyan V. R., JETP Lett., 73

(2001) 232.
[20] Paglione J. et al., Phys. Rev. Lett., 97 (2006) 106606.
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