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Abstract – We present a simple one-parameter model for spatially localised evolving agents
competing for spatially localised resources. The model considers selling agents able to evolve
their pricing strategy in competition for a fixed market. Despite its simplicity, the model
displays extraordinarily rich behaviour. In addition to “cheap” sellers pricing to cover their
costs, “expensive” sellers spontaneously appear to exploit short-term favourable situations. These
expensive sellers “speciate” into discrete price bands. As well as variety in pricing strategy, the
“cheap” sellers evolve a strongly correlated spatial structure, which in turn creates niches for
their expensive competitors. Thus an entire ecosystem of coexisting, discrete, symmetry-breaking
strategies arises.
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Many economic models of marketplace interactions have
been formulated (e.g., [1–3]). Generally, these systems
assume complete information, and no transaction costs.
That is, for interacting buyers and sellers, buyers may
always search the entire space of sellers (possibly with
some search cost) in order to find the best deal.
When competition is between sellers, such games

generally have a stable, zero-profit (Nash) equilibrium,
possibly with multiple prices [1,3]. Despite a substantial
literature on spatial extensions to classic game theo-
retic models such as the Prisoner’s Dilemma [4–7], few
models exist for simple marketplaces in which buyers
cannot access the entire seller space (some exist for
real-world situations, see, e.g., [8]). Again in the context
of the Prisoner’s Dilemma, much progress has been
made by considering players which are only adaptive by
random mutation with selection [9,10] as in ecological
models [11,12]. However, this has been only infrequently
applied to marketplace games, one model is described
in [13].
In this paper we present a simple spatial model,

similar in spirit to the Minority Game [14,15], with
limited interaction distances and random mutations with
selection. The model is formulated in terms of active,

(a)E-mail: lawrence.mitchell@ed.ac.uk
(b)E-mail: g.j.ackland@ed.ac.uk

evolving sellers competing for passive buyers. A dual
ecological model involves different species competing for
a scarce resource.
We attempt to make the simplest possible model for

a spatially distributed market with localised information
and evolving price strategy. We consider a system of 2N
interacting agents: agents are split into one of two types,
there are N selling agents (sellers) and N buying agents
(buyers). Agents are placed on a 1-dimensional chain
where each site contains a seller, and each link a buyer.
Buyers are connected to their nearest neighbours, i.e., they
have knowledge of 2 sellers (fig. 1). Each seller has capital
Ci and an unvarying price Pi. Initial prices are drawn from
Pi ∈ [1, Pmax].
Each iteration proceeds as follows:

1. All sellers’ capital is reduced by 2, the cost of
producing enough stock for both possible buyers.

2. Each buyer visits the cheapest connected seller.

3. For each buyer visiting seller i, Ci increases by Pi.

4. All sellers with Ci < 0 are bankrupt: site i becomes
vacant.

5. Vacant sites are repopulated with probability γ.

6. New sellers at site i have Ci = 0.
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S1 S2 S3 SN. . .

Fig. 1: Diagram of buyer-seller connections in 1D. Buyers
and sellers are shown by black squares and open circles,
respectively. Arrows indicate the sellers an individual buyer
may visit.

7. New sellers at site i take the price of an existing
seller at randomly chosen site j, Pi = Pj +dp (dp∈
[max(−∆, 1−Pj),∆]).

Note that buyers are always present, but unlike in
the other games mentioned above, sellers’ sites might
not participate in all rounds of the game (if γ �= 1).
This allows for local variation in the spatial structure
and the availability of supply. We choose to keep buyers
in fixed positions (even if there is no local supply):
introducing movement of buyers requires the introduction
and motivation of further parameters in the model. For
example, when should buyers decide to move, if they move
diffusively, what should the diffusion constant be, should
there be a cost to movement and so forth. The choice of
“dumb” buyers is motivated by wishing to construct as
simple a model as possible.
Sellers are assumed to know their overhead cost (2),

and will not charge below this. Stock is assumed to be
perishable and thus, any unsold stock is destroyed1. The
new sellers may be regarded either as independent sellers
adopting their strategy from successful rivals, or franchises
of those rivals.
Similarly, it is a matter of definition whether the sellers

are in any sense “intelligent”. A seller makes no price
adjustment between its initial appearance and bankrupcy,
so in this sense exhibits no intelligence. It may be assumed
to have no information about its neighbours’ strategy
for the upcoming round, which would in turn prevent
it from deducing an optimal strategy: as we shall see,
in the evolved state there is a high turnover of sellers
such that two neighbours seldom compete for more than
one round. The sites, by contrast, do have a degree of
intelligence, since when their strategy is observed to have
made a loss they change it to one which has been successful
elsewhere. There is strong evidence that independent
businesses do indeed adopt known successful business
plans, or that “best practice” within a franchise spreads
from one location to another. While it may be argued that
a more intelligent seller (rather than site) strategy might
do better, there does not seem to be a single obvious way in
which to set up such a strategy. If we consider a case where
a seller changes strategy after some number of losses, we
add a further parameter to the model (how many rounds
should she wait before changing). Equally, there are many

1Alternately, stock could have negligible value compared to fixed
costs.

ways in which one could specify how the seller changes her
strategy, the choice of which adds yet further complication.
There are three parameters in the model, Pmax, ∆, and
γ. Pmax is simply a boundary on the initial conditions; as
we shall see, for reasonable values, the mutation step ∆
affects only the timescale of reaching equilibrium: γ is the
only parameter which governs system behaviour.
We will show that this model produces very complex

behaviour, with a range of discrete but non-symmetric
strategies emerging. Before doing so, we discuss what
would be expected from a mean-field approach.
The classic analysis for this type of demand-limited

competition [16] suggests that prices will be driven down
to the “Bertrand equilibrium”, a level that recoups the
production cost, here P0 = 1. With the current model,
there is insufficient demand to support all sellers at this
price, thus there will be dead sites whose number may be
estimated.
Initially, consider the case where the system is already

in the Bertrand equilibrium: let the price of each seller
be chosen randomly from a uniform distribution
P ∈ [1, 1+ δ], with small variation: δ∼∆� 1. In order
to survive a round, each seller must sell all its stock.
Consider a live seller, at the beginning of a round it will

be in one of three situations:

1. Both neighbouring sellers are dead.

2. One neighbouring seller is dead, while the other is
alive.

3. Both neighbouring sellers are alive.

Let α be the proportion of live sellers at the beginning
of the round, then we can write the probability of each
of the three cases as: p1 = (1−α)2, p2 = 2α(1−α), and
p3 = α

2. In order to survive, the seller must either be
in situation (1), or in situation (2) or (3) and outcom-
peting the live sellers. This gives a survival probability
(given the uniform price distribution) of ps = p1+

p2
2 +

p3
∫ 1
0
(1−x)2dx= α23 −α+1. The proportion surviving is

hence f(α) = α(α2/3−α+1). Thus, with γ = 12 , at the
beginning of the next round, the proportion of live sites
is 12 (1+ f(α)); in the steady state, this must be equal to
α. Solving numerically gives the proportion of live sites in
the steady state as αss ≈ 0.66.
An alternative assumption is to search for Nash equi-

librium of the game. Although our agents are constrained
to have fixed price (so-called pure strategies) it is known
that the ensemble average at a Nash equilibrium of pure
strategies is the same as the time-average for mixed strate-
gies, provided the pure agents do not know which strategy
they are playing against [17]. Thus we might guess that
our distribution of prices will resemble the mixed Nash
equilibrium for the non-spatial game.
In this analysis, we assume that there is a distribution of

prices f(p) which includes the Bertrand price P0. In Nash
equilibrium with mixed strategies, all strategies have the
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Fig. 2: (Colour on-line) Migration of phase boundaries and
correlation amongst cheap sellers over time. Each row repre-
sents one site (after rebirth), coloured according to price. A
dead site is black; a site with P ∈ [1, 1.00004) is white; a site
with P ∈ [1.00004, 1.008) is grey; a site with P ∈ [1.008, 1.28) is
blue. Each column represents one timestep, the picture shows
around 300 timesteps in total.

same payoff - since P0 has zero payoff, other strategies
which offer zero payoff are included. Since all prices below
P0 always lose, we need consider only higher prices:

∫ ∞
pi

(pi− 1)f(p)dp=
∫ pi
1

f(p)dp, (1)

whence f(p) = 1/p2. This approach ignores the possibil-
ity that sites are unoccupied. We may include this in
the analysis by allowing an unoccupied site, paying no
overhead, to be part of the strategy (it has the same
payoff as P0). It turns out, however, that the mixed
strategy equilibrium does not contain this particular
pure strategy: let the probability that a site plays be η,
now suppose that an opposing site chooses to play with
probability β. In order to maximize our expected profit, we
should now choose η > β (cashing in when our opponent
plays dead). Equally, however, our opponent should choose
β > η, to maximize her expected profit. Thus, the equilib-
rium situation is for both players to choose η= β = 1, i.e.,
to play every round.
Simulated results with initial prices seeded close to the

Bertrand equilibrium show that the mean-field assump-
tion is invalid. We find α= 0.71± 0.01 in the steady state,
which does not agree with the prediction for αss. Closer
examination of the structure of the steady state in simu-
lation shows that there is a high degree of correlation
in placement of sellers. If the steady state were a mean
field, we would expect p(n)≈ αss, ∀n. As can be seen in
fig. 2, this is evidently not the case. An ordered array of
“supercheap” sellers on alternate sites forms with prices
very close to P0: Pi−P0�∆. The presence of such an
array is stable against intrusion in the intermediate sites,
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Fig. 3: Steady state price distribution forN = 105 and N = 106,
γ = 1

2
, Pmax = 8, ∆= 0.04, price shown in units of P0, y-axis is

absolute number of sellers. Insets shows evolution of the P = 2
band to a steady state for N = 105, y-axis is fraction of total
sellers. Note that main figure is a log-linear plot, while insets
are linear. Panel (a) is after 100 timesteps, (b) after 500, and
(c) in the steady state. A sharp band forms initially above
P = 2 which creates a niche for sellers with prices P < 2, the
band then migrates downward and broadens to that in (c).
Data binned by rounding to 3 decimal places, and subsequently
smoothed with a 5 point average. The main features of the
graph are size independent and reproducible (as shown), and
sharpen with reduced ∆.

as a putative new seller opening there must be cheaper
than both neighbours, and both their eventual replace-
ments to survive.
The fully correlated case, where every other seller is

supercheap, has αss = 0.75, while the uncorrelated case
has αss ≈ 0.66. In between the two extremes is the actual
situation. With random initial conditions, many correlated
regions develop at the same time. In order for them
to match at their boundaries, they must nucleate in
phase, otherwise they form an antiphase boundary which
cannot be removed by the addition or removal of a single
supercheap seller (fig. 2). Thus the Bertrand “equilibrium”
is locally stable to small perturbations, although some
spatial structure is already visible (fig. 2).
Simulation of the model with a wider range of initial

prices shows that the global steady state is a good deal
more complex: a range of high-price sellers coexist with
the cheap ones: fig. 3. These sellers exploit temporary
monopoly situations where adjacent sites are dead.
This extraordinary behaviour is at variance with a

conventional demand-limited picture, and can be likened
to biological speciation. Several distinct seller types
emerge, which cannot mutate into one another. The
expensive sellers need not have an infinite lifetime:
because of the replicator dynamics it suffices that each
should be replicated once in its average lifetime.
Due to the highly correlated environment which expen-

sive sellers occupy, a mean-field analysis is insufficient.
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Instead, consider the first band (P = 2) of expensive sellers
in 1D: these survive if they sell to, on average, one buyer
per turn. The possible changes in the capital C of such an
expensive seller, assuming its neighbours are cheap, are

1. ∆C = P − 1 if both neighbouring sellers are dead,
2. ∆C = P/2− 1 if one neighbour is dead and the other
is alive,

3. ∆C =−1 if both neighbours are alive.
C therefore carries out a random walk halting when the
capital becomes negative. The näıve guess is that this walk
is biased in favour of the negative step; one might expect
that p1 = (1−α)2, p2 = 2α(1−α), and p3 = α2 with
α≈ 0.68. However, simulation tells us that the mean
lifetime of expensive sellers scales with the lifetime of the
game, our näıve guess must therefore be incorrect.
It turns out that the long-lived expensive sellers occupy

favourable niches: the “supercheap” sites of the correlated
phase, i.e., their second neighbours are supercheap. In the
limiting case, this means that their first neighbour com-
petitors are dead 50% of the time. This changes the step
direction bias in the random walk described above since
the probabilities primarily depend on γ rather than α: the
mean lifetime of such a walk with γ � 12 is infinite.
These niches would appear to allow arbitrarily high

prices, and any seller charging � 2 to survive. However,
one can apply the ideas of Bertrand competition to the
expensive sellers: on a long enough timescale they will set
up adjacent to one another, and capital will be transferred
to the cheaper seller.
The discrete trading rounds mean that integer prices

will have better short term survival prospects: e.g., a sale
to one buyer at 4 in the first trading period will ensure
survival for two rounds, while 3.9 will only survive one.
In this scenario with two potential buyers, the advantage
for odd integer price is less: e.g., a price of 3 has to
sell twice to survive an extra round compared with 2.
If one starts with a homogenous distribution of initial
prices, this leads to “speciation”: symmetry breaking
in the preferred price band favouring marginally above
integer value, fig. 3. Remarkably, once the speciation has
occured, the character of the competition changes again.
“Intraspecies” competition between sellers in the same
price band becomes critical, and prices below the integer
values become viable, until a balance is reached between
intra- and inter-species competition.
Although this analysis requires that trading rounds be

discrete, the main features (heavily favoured prices) are
still present if trading happens in a stochastic manner.
For stochastic dynamics, a buyer is chosen at random to go
shopping, and a seller is chosen at random to pay an over-
head, this is repeated such that the expected number of
times a buyer goes shopping is one, this completes one
trading round. The bankruptcy and rebirth dynamics
procede as before. Since buyers may now visit a seller more

0
0

0
0

0
0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

9

9

10

10

11

11

12

12

13

13

(a)

(b)

Price

Price

Fr
ac

tio
n 

of
 s

el
le

rs

Fr
ac

tio
n 

of
 s

el
le

rs

0.005

0.01

0.01

0.01

0.015

0.02

0.02

0.02

0.025

Fig. 4: Steady-state price distribution for stochastic dynamics
with N = 4× 104, γ = 1

2
, ∆= 0.04. Distribution averaged over

final state of 20 ensembles, error bars show standard error in
mean. Inset shows steady-state price distribution for discrete
trading rounds and no minimum price for connectivities of
(a) 4, and (b) 7 buyers per seller (overhead of 4 and 7, res-
pectively), the peaks at 4 and 7 in (a) and (b) correspond to
sellers attracting one buyer.

than once, there is no upper bound on the amount of stock
a seller may sell, we therefore set the quantity of stock to
∞, and thus the marginal cost to zero. Despite this, prices
at integer multiples of P = 1 are still favoured (fig. 4).
The appearance of favoured prices is not restricted to

the 1D line-like geometry: placing the system on a square
lattice (connectivity 4) and also on lattices with higher
connectivities still results in favoured prices (fig. 4 inset):
this figure shows that prices P = dn/m (n and m small
integers, d the connectivity) are favoured, corresponding
to attracting m/n buyers on average per round.
We now consider whether such expensive sellers are

in some sense beneficial. Due to the existence of dead
sites and the limited interaction distance, demand is not
completely satisfied. The introduction of a wider range of
prices results in both a larger total population and more
demand being satisfied.
The dependence of the lifetimes of the expensive sellers

on γ tells us that this parameter may be used to character-
ize the distribution. In the limit γ→ 1 all sellers charge the
Bertrand price, as there is is never any chance of expen-
sive sellers being the only option for consumers. Equally,
γ = 0 leads to an essentially random distribution of sell-
ers (depending on initial conditions). In between these
two extremes, we expect some kind of transition from a
regime with expensive sellers to one without around γ = 12 :
if γ < 12 the random walk of the expensive sellers is biased
in favour of the upward, profit-making step, allowing them
to survive indefinitely.
By monitoring fluctuations in a simulation we can see

that the system undergoes a transition at a critical value
of γ ≈ 12 in which the variance in the number of live sellers
diverges (fig. 5).
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Fig. 5: Variance in the time-averaged mean of the fraction
of live sellers (before rebirth) as a function of γ, N = 104,
smoothed using 5 point average separately above and below
γ = 0.5. Inset shows the fraction of expensive sellers (after
rebirth) as a function of γ.
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Fig. 6: (Colour on-line) Time-averaged unsatisfied demand as
a function of the birth rate, γ, in enforced Bertrand steady
state (green) and multiple price steady state (blue), N = 104,
mean taken as a time average over 2× 104 timesteps after the
steady state is reached. Inset shows corresponding fraction of
live sites after rebirth for Bertrand (green) and non-Bertrand
(blue) steady state. Error bars show standard error in the
mean.

We see further evidence of a transition when consid-
ering the mean unsatisfied demand, being approximately
constant for γ < 12 and quadratic for γ >

1
2 (fig. 6). If

there were no transition, we would expect the demand to
be quadratic in γ for all values: this is indeed the case if we
force the system into a Bertrand steady state by specifying
initial conditions accordingly.
The system has a metastable regime for γ < 12 . If

the initial conditions only sample the Bertrand regime
(P ≈ 1), then it remains in such a steady state indefinitely.
Equally, if the initial conditions sample the whole price
spectrum, then the final steady state contains multiple

price bands. In order for the system to escape from the
Bertrand state, it requires a nucleation of expensive sellers
which cannot happen through mutations in prices (due
to adverse selective pressures on intermediate prices).
Equally, for small system sizes, fluctuations may eliminate
high price bands which cannot be repopulated.
According to Nash [18], it is possible for multiple

strategies to coexist provided that no individual can do
any better by changing their strategy. In our system,
changes in price at a site are discontinuous, as are changes
in the competing strategies of the neighbours (each
changes only when the seller’s capital goes to zero). These
discrete, localised changes prevent the system finding a
perfect Nash equilibrium. To apply the notion of a Nash
equilibrium one has to assume that the evolution of prices
is equivalent to the sites behaving as rational agents: it
is possible that this is the case only in the infinite time
limit, not reached by our simulations. Another hypothesis
about evolving, replicating systems is that the system
as a whole organises to maximise the number of replica-
tors (here, sellers) [19]. In fig. 6 we see good evidence for
this: the expensive sellers become viable when they are
able to increase the total number of living sellers
above the Bertrand solution. A side effect of this is to
minimise the unsatisfied demand.
We have shown that the obvious spatial generalization

of a classic Bertrand-Edgeworth game has some surpris-
ing results. The classical Bertrand equilibrium is not
necessarily reached, as the system is able to self-organise
to produce niches where different strategies can flour-
ish. Further, we have shown that random mutation and
selection can (in the case of restricted initial conditions)
produce the expected Nash result. That is, sellers need
not be active in selecting strategies, the selective force
against badly performing members is enough to bring the
system to equilibrium. The nature of interactions between
the parameters is well understood and thus further work
could focus on introducing more realistic choices for parts
of the model (such as the ability for sellers to attract new
buyers or change strategy). Further, the simplicity of the
model suggests that it may be amenable to exact solution.
The spontaneous production of evolutionary niches

in an initially homogeneous space has strong parallels in
evolutionary ecology. We can envisage a similar situa-
tion where the “sellers” become individuals foraging for
food. The “cheap sellers” represent foragers which are
efficient at finding the food, but have a high metabolic
rate and need to feed often. The “expensive sellers” are
less efficient at foraging, but can survive for longer on
the same amount of food.
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