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Abstract – We have studied numerically the mesoscopic fluctuations of the conductance of
a graphene strip (width W larger than length L), in an ensemble of samples with different
realizations of the random electrostatic potential landscape. For strong disorder (potential
fluctuations comparable to the hopping energy), the variance of the conductance approximates
the value predicted by the Altshuler-Lee-Stone theory of universal conductance fluctuations,
VarGUCF = 0.12 (W/L)(2e

2/h)2. For weaker disorder the variance is greatly enhanced if the
potential is smooth on the scale of the atomic separation. There is no enhancement if the potential
varies on the atomic scale, indicating that the absence of backscattering on the honeycomb lattice
is at the origin of the anomalously large fluctuations.

Copyright c© EPLA, 2007

Phase coherent diffusion in metals is accompanied by
sample-to-sample fluctuations in the conductance of the
order of the conductance quantum e2/h, dependent on
the shape of the conductor but independent of its size
or of the disorder strength. This is the phenomenon
of universal conductance fluctuations (UCF) [1,2]. The
universality does not extend to different transport regimes,
in particular the fluctuations become much smaller than
the UCF value both in the ballistic regime of weak disorder
and in the localized regime of strong disorder [3,4].

In this paper we report on the observation in a com-
puter simulation of a transport regime with conductance
fluctuations that are much larger than the UCF value. The
anomalously large fluctuations appear in a tight-binding
model of a carbon monolayer, for a disorder potential
that is smooth on the scale of the atomic separation and
weak on the scale of the hopping energy. It is known
that such a potential in a honeycomb lattice can deflect
the electrons but cannot scatter them backwards [5,6].
The consequences for weak localization of the absence of
backscattering have been studied theoretically [7–10] and
experimentally [11,12]. While conductance fluctuations
as a function of magnetic field in a given sample have
been observed experimentally [11,13,14], and analyzed in
terms of the UCF theory, the anomaly found here in the

sample-to-sample fluctuations has not been reported
previously.
We consider a disordered strip of graphene in the xy

plane, connected to ballistic leads at x= 0 and x=L
(see fig. 1). The orientation of the honeycomb lattice is
such that the edges at y= 0 and y=W are in the zigzag
configuration. We vary L and W at fixed aspect ratio
(mostly taking a rather large ratio W/L= 3 to minimize
the effects of edge states). The lattice Hamiltonian is

H =
∑
i,j

τij |i〉〈j|+
∑
i

[
Ugate(ri)+Uimp(ri)

]|i〉〈i|. (1)

The hopping matrix element τij =−τ if the orbitals |i〉 and
|j〉 are nearest neigbors (with τ ≈ 3 eV), otherwise τij = 0.
The velocity v near the Dirac point equals v= 12

√
3 τa/�≈

106m/s, with a= 0.246 nm the lattice constant.
The electrostatic potential contains a contribution Ugate

from gate electrodes and a random contribution Uimp
from impurities. The potential Ugate vanishes in the leads
x< 0 and x>L and equals U0 in the strip 0<x<L. By
varying U0 at fixed Fermi energy µ∞ in the leads, we can
vary the Fermi energy µ0 = µ∞−U0 in the strip. We take
µ∞ = τ/2 and compare the two cases U0 = µ∞⇒ µ0 = 0
and U0 = 0⇒ µ0 = µ∞. The first case is an undoped
graphene strip, the second case is a heavily doped strip
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Fig. 1: Top panel: top view of the honeycomb lattice in a
graphene strip, connecting two electrical contacts at a voltage
difference (gray rectangles). The samples used in the simulation
are much larger than the one shown here. Bottom panel:
potential profile along the strip, showing the fluctuations from
the disorder.

(but still at sufficiently small Fermi energy that the
linearity of the dispersion relation holds reasonably well).
We generate a realization of the disorder potential by

randomly choosingNimp lattice sitesR1,R2, . . .RNimp out

of the total number Ntot =
4
3

√
3LW/a2 of sites in the

disordered strip, and by randomly choosing the potential
amplitude Un at the n-th site in the interval (−δ, δ). We
then smooth the potential over a range ξ by convolution
with a Gaussian,

Uimp(r) =

Nimp∑
n=1

Un exp

(
−|r−Rn|

2

2ξ2

)
. (2)

In the special case ξ� a, Nimp =Ntot each of the lattice
sites in the strip has a randomly fluctuating potential.
This is the Anderson model on a honeycomb lattice
studied in ref. [15]. We contrast this model of atomic-scale
defects with the case ξ = a

√
3 of a potential which is still

short-ranged on the scale of the system size but which
varies smoothly on the atomic scale. Such a potential
could be realized by screened charges in the substrate.
(The Gaussian smoothing is chosen for computational
convenience, and we have checked that the results are not
sensitive to the type of smoothing considered.)
We quantify the disorder strength by the dimensionless

correlator

K0 =
LW

(�v)2
1

N2tot

Ntot∑
i=1

Ntot∑
j=1

〈Uimp(ri)Uimp(rj)〉 (3)

of the random impurity potential (with vanishing average,
〈Uimp〉= 0). This single number K0 is representative on
length scales large compared to the correlation length ξ.
For the model potential (2) we find (for ξ�L,W )

K0 =
1

9

√
3 (δ/τ)2(Nimp/Ntot)κ

2, (4)

κ =
1

Nimp

Nimp∑
n=1

Ntot∑
i=1

exp

(
−|ri−Rn|

2

2ξ2

)

=

{
1, if ξ� a,

8
3π
√
3 (ξ/a)2, if ξ� a. (5)

For large µ0 the correlator K0 determines the transport
mean free path ltr in Born approximation [6,7],

ltr =
2

kFK0
×
{
2, if ξ � a,
1, if ξ� a, (6)

where kF = |µ0|/�v is the Fermi wave vector in the strip
(which should be � 1/ltr for the Born approximation
to hold). The factor-of-two increase in ltr for smooth
disorder is due to the absence of backscattering in the
honeycomb lattice [5,6]. The corresponding “classical”
conductivity (without quantum corrections) is given by
σclass = (2e

2/h)kF ltr.
We calculate the transmission matrix t numerically

by means of a recursive Green function algorithm. The
conductance G then follows from the Landauer formula
G= (2e2/h)Tr tt†. (The factor of two accounts for the
spin degeneracy.) By repeating the calculation for some
300–3000 realizations of the disorder potential, we obtain
the average conductance 〈G〉 and the variance VarG=
〈G2〉− 〈G〉2. Results are shown in fig. 2 at the Dirac point
(µ0 = 0) and in fig. 3 at µ0 = τ/2.
The Altshuler-Lee-Stone theory of universal conduc-

tance fluctuations (UCF) gives a variance [1,2,4]

VarGUCF =C
1

β

(
se2

h

)2
W

L
, if W �L, (7)

with C = (3/π3)ζ(3) = 0.116 and ζ(x) the Riemann zeta-
function. For atomic-scale disorder, the symmetry index
β = 1 (orthogonal symmetry) and the degeneracy factor
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Fig. 2: Average and variance of the conductance as a func-
tion of the strength of the disorder potential, quantified by the
correlator (3). These plots are for the case that the disordered
strip is at the Dirac point (µ0 = 0). The data points are for
a smooth, short-range impurity potential (correlation length
ξ = a

√
3), with different values of the impurity density

Nimp/Ntot. Open symbols are for L= 40 a, filled symbols for
L= 72 a (at fixed aspect ratio W/L= 3). The solid and dashed
lines are the Anderson model of atomic scale disorder (ξ = 0,
Nimp =Ntot, L= 40 a (solid) and L= 72 a (dashed)).

s= 2 (only spin degeneracy). For smooth disorder, one
has β = 4 (symplectic symmetry) and s= 4 (both spin and
valley degeneracy). In each case, the variance thus has the
same value VarGUCF =C (W/L)(2e

2/h)2.
In figs. 2b, 3b we see that the conductance fluctua-

tions approach the UCF value for sufficiently strong disor-
der. This is by itself remarkable, since the Altshuler-
Lee-Stone theory requires weak disorder, such that the
conductivity σ≡ 〈G〉L/W � e2/h. Our numerical data for
VarG only approaches Var GUCF when the disorder is so
strong that σ	 e2/h. For weaker disorder, the conduc-
tance fluctuations first rise to a peak value VarGpeak well
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Fig. 3: Same as fig. 2, but now for the case that the disordered
strip is away from the Dirac point (µ0 = τ/2 = µ∞) .

above VarGUCF, and then drop to zero upon entering the
ballistic regime.
The increase of the conductance fluctuations above

the UCF value does not happen for the Anderson
model of atomic-scale disorder (solid and dashed
curves). For smooth disorder the enhancement factor
VarGpeak/VarGUCF increases with increasing Fermi
energy µ0 —it is therefore not restricted to the vicinity of
the Dirac point. The enhancement factor also increases
with increasing ξ (not shown), but at fixed ξ it is insensi-
tive to the system size (compare open and filled symbols
in figs. 2b, 3b). The anomalous enhancement does not,
therefore, appear to be a finite-size effect.
The transport mean free path (6) at µ0 = τ/2 is ltr =

4
√
3 a/K0 (for smooth disorder), so ltr/L≈ 0.1 at the peak

of maximal conductance fluctuations in the largest system
considered. We are therefore well outside of the ballistic
regime, but the UCF value characteristic of diffusion is
not reached until the mean free path has been reduced by
another factor of ten. By comparing the data in fig. 3a
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for L/a= 40 and L/a= 72, we can conclude that the
diffusive regime (with a scale-invariant conductivity) is
not reached until K0 � 10 for smooth disorder, while the
diffusive regime is reached already forK0 � 0.1 for atomic-
scale disorder1.
While the disappearance of the anomaly for atomic-

scale disorder unambiguously indicates that the symplec-
tic symmetry of the Dirac Hamiltonian is responsible
for it, we have not been able to explain our simulations
consistently in terms of existing transport theories for
Dirac fermions [16–24]. Certain features of the data
suggest a partial explanation.
First of all, at the Dirac point (µ0 = 0), the enhancement

of the conductance fluctuations happens in the same
range of disorder strengths as the enhancement of the
conductivity above the ballistic value [25,26]

σballistic =
4

π

e2

h
. (8)

This increase of σ was predicted by Titov [24] as a mani-
festation of resonant transmission of evanescent modes.
We would expect such transmission resonances to enhance
the mesoscopic fluctuations, but we would also expect the
effect to diminish as the evanescent modes become prop-
agating away from the Dirac point. Instead, the peak in
VarG becomes larger with increasing µ0, while the peak
in σ disappears.
A second striking feature of the numerical data is that

an increase of the impurity density Nimp/Ntot and a
decrease of the impurity potential δ at fixed K0 has no
significant effect on the conductance (compare the differ-
ent open symbols in figs. 2, 3, which all lie approximately
on a single curve). This signifies that the transition from
the anomalously large fluctuations at weak disorder to the
UCF value at stronger disorder is not related to the Born-
Unitarity transition of ref. [21] (which should appear at
smaller K0 for smaller Nimp/Ntot).
The percolation transition of ref. [22] is more likely to

be at the origin of the strong increase of the conductance
fluctuations away from the Dirac point (where kF ξ � 1),
in the regime 0.1�K0 � 10 in between the ballistic and
diffusive transport regimes. One would expect the presence
or absence of a percolating trajectory to produce large
sample-to-sample fluctuations in the conductance, which
would increase both with increasing kF and with increas-
ing ξ —as observed in our simulations. This interpreta-
tion would imply that the conductance fluctuations result
from variations in trajectories rather than fluctuations in
phase shifts.
To support this interpretation we compare in fig. 4 the

variance VarG of the sample-to-sample fluctuations with

1We have calculated the third and fourth cumulants, to search
for deviations from a Gaussian conductance distribution. In the
parameter range of fig. 3 no significant deviations are obtained in
the case of smooth disorder. We need atomic-scale disorder to obtain
significantly non-Gaussian distributions at large disorder strengths.

0

2

4

6

8

10

0.01 0.1 1 10 100
K0

a)

(L
|W

)〈
G

〉 ×
 h

|4
e2

N imp|Ntot=0.022 
0.045

0

1

2

3

4

0.01 0.1 1 10 100
K0

b)

V
ar

 G
|V

ar
 G

U
C

F

N imp|Ntot =0.022 
0.045

Fig. 4: Average and variance of the conductance away from the
Dirac point (µ0 = τ/2) as a function of disorder strength, for a
square sample (L=W = 121 a). The filled symbols in (b) give
the variance VarG of the sample-to-sample fluctuations, while
the open symbols give the variance VarµG of the energy-
dependent fluctuations. (The latter quantity was calculated
for a given sample by varying µ0 ∈ (0.44 τ, 0.5 τ) and then
averaging the resulting variance over 400 samples.) The solid
curves in (a) and (b) represent, respectively, 〈G〉 and VarG in
the Anderson model of atomic disorder. (In that model there
is no significant difference between VarG and VarµG.)

the variance VarµG of the fluctuations obtained in a given
sample upon varying the Fermi energy µ0 over a narrow
interval. The former quantity contains contributions
both from variations in trajectories and variations in
phase shifts, while in the latter quantity variations in
phase shifts give the dominant contribution. To improve
the numerical efficiency, we took W/L= 1 for this
comparison. The results for VarG (filled symbols in
fig. 4b) are similar to those plotted in fig. 3b for W/L= 3:
A large enhancement appears of the sample-to-sample
fluctuations above the UCF value. In contrast, the
variance VarµG of the energy-dependent fluctuations
(open symbols) does not show this enhancement, instead
agreeing well with the UCF prediction (which forW/L= 1
equals VarGUCF = 0.186× (2e2/h)2).
In the Altshuler-Lee-Stone theory of UCF one has

VarG=VarµG: Sample-to-sample fluctuations and
fluctuations as a function of energy or magnetic field
give the same variance. Our computer simulations imply
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that, remarkably enough, this so-called ergodicity of the
mesoscopic fluctuations does not hold in graphene. An
analytical theory to explain this unexpected numerical
result is still lacking.
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