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Abstract – We study elastic buckling of a uni-axially pre-tensioned soft elastic film in proximity
to a rigid contactor due to van der Waals interaction. By a linear analysis, we show that the
film will buckle into stripes parallel to the tensile direction, with tunable spacing governed by the
magnitude of the pre-tension. Such a regulating effect of pre-tension may find practical applications
in generating precise surface patterns.
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Surface buckling of soft elastic solids has been an
important topic of research [1,2]. The study is not only of
fundamental interest for understanding the mechanisms
themselves, but also of technological importance for
generating precise patterns in practical applications [3–5].
Recently, experimental observation [6] indicated that,
when brought in proximity to a plane contactor, the
surface of a soft thin elastic film bonded to a rigid
substrate will lose planarity and jumps in adhesion to
the contactor in a periodic way. The ripple pattern
exhibits fixed length scale of the same order as the film
thickness, but lacks a long-range order. Theoretically,
this phenomenon has been interpreted to be a result
of the interplay of the elastic energy of the thin film
and the interaction energy between the film and the
contactor [7–15]. The interaction may arise from any of
such causes as the long-range van der Waals force and
external electric field, etc. A question is raised naturally:
can we regulate the buckling pattern in a simple way?
In this letter, we show that the buckling pattern can be
regulated indeed by pre-tensioning the thin film.
Our idea can be explained qualitatively. Suppose that

an elastically isotropic and incompressible film of thick-
ness H is tensioned in one direction up to λ times its
original length, and then glued perfectly onto a flat,
rigid substrate. The dimensionless parameter λ, called
principal stretch in the tensile direction, characters the
deformation of the homogeneously tensioned film. Due to

(a)E-mail: lhhe@ustc.edu.cn

the confinement of the substrate, the tensioned state of the
film can be retained after removing the external force. As
a consequence of incompressibility, the film possesses pre-
stretch λ−1/2 in the plane normal to the tensile direction
and, especially, its thickness now becomes h= λ−1/2H.
Intuitively, a further stretch of the film surface normal
to the pre-tension direction is easier than parallel to the
pre-tension direction. We thus expect that the pre-tension
can regulate the buckling mode of the film when a flat
contactor is brought in enough proximity.
To perform a quantitative analysis, we start with the

consideration of the homogeneously tensioned state of
the film. In the absence of a nearby contactor, the film
surface is planar. We choose this state of the film as
the reference configuration, and introduce a rectangular
coordinate system (x1, x2, x3) so that the (x1, x2)-plane
coincides with the film surface and the x1-axis is along
the tensile direction (fig. 1). When a flat contactor is fixed
at a distance d above the film, an additional displacement
u= uiei is induced due to van der Waals interaction, with
ei being the base vector along the xi-axis. We assume
that u is sufficiently small for the sake of a linear analysis,
but the principal stretch λ can be significantly greater
than unity. Thus, the film undergoes a finite pre-tension
followed by a small displacement perturbation. This is in
strong contrast to the previous studies [7–15] in which the
film does not bear any pre-tension.
For purpose of deriving the basic equations of the

film, we denote the position vectors of a material point
in the stress-free state, the homogeneously tensioned
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Fig. 1: Sketch of the problem, where the elastomer film is pre-
tensioned in the x1-direction.

state, and the current state by X=Xiei, x= xiei, and
x̂= x̂iei, respectively. Since x1 = λX1, x2 = λ

−1/2X2, x3 =
λ−1/2X3, and x̂i = xi+ui, X and x̂ can be represented as
functions of x, and the total deformation gradient of the
film can be obtained by F= ∂x̂/∂X=F2 ·F1, in which
F1 = ∂x/∂X= λe1⊗ e1 + λ−1/2e2⊗ e2 + λ−1/2e3⊗ e3,
F2 = ∂x̂/∂x= I+∇u.

(1)
In the above relations, the symbol “⊗” stands for tensor
product, I is the identity tensor, ∇u= ui,j ei⊗ ej is the
displacement gradient, and a comma is used to denote
differentiation with respect to the suffix coordinate. Of
special importance are the left and right Cauchy-Green
strain tensors, defined by B=F ·FT and C=FT ·F,
respectively, with T representing the transpose of a
tensor. Either B or C can completely describe the finite
strain of the film. For simplicity, we assume that the film
material is neo-Hookean [16]. In this situation the consti-
tutive law of the film is written as σ= µB− p I, where σ
is the Cauchy stress tensor defined with respect to unity
area in the current state of the film, µ is shear modulus,
and p is hydrostatic pressure. Making use of eq. (1) and
keeping only the first-order term of the displacement
gradient, we have

σ= µ
[
B1+B1 · (∇u)T +(∇u) ·B1

]
− p I, (2)

in which B1 =
(
λ2−λ−1) e1⊗ e1+λ−1I. When λ �= 1,

we can see the stress σ as a function of the tensor
∇u and the scalar p as given in (2) does not satisfy
Q ·σ(∇u, p) ·QT =σ(Q ·∇u ·QT , p) if the orthogonal
tensor Q is chosen as Q= e1⊗ e2− e2⊗ e1+ e3⊗ e3.
This implies that the pre-tension leads to that the
originally isotropic film material behaves anisotropically
with respect to the reference configuration. Note that the
neo-Hookean constitutive law (2) is an approximation

valid for principal stretches close to 1. However, we believe
that we can use it to show an informative trace of the
real physics, though some more elaborated constitutive
laws have been proposed for soft elastic materials.
The free energy Π of the system involves the contribu-

tions from the strain energy, the surface energy, and the
van der Waals interaction. Omitting the effect of body
force and denoting volume and surface elements in the
reference configuration by dv and ds, respectively, we have

Π =

∫
v

Σ(E) det(F2)dv

+

∫
s

[γ+ U(u · e3)] det(F2)(e3 ·C−12 · e3)1/2ds. (3)

Here Σ(E) is the strain energy density depending on
the Lagrangian strain tensor E measured with respect to
the stress-free state, γ is the specific surface energy that
is assumed constant, U(u · e3) =−A/[12π(d−u · e3)]2 is
the van der Waals interaction potential with A being
the Hamaker constant, and C2 =F

T
2 ·F2 is the addi-

tional right Cauchy-Green strain tensor caused by the van
der Waals interaction. The Lagrangian strain tensor E
relates to the total right Cauchy-Green strain tensor by
E= (C− I)/2, and the variation of strain energy density
Σ(E) can be expressed by δΣ(E) =T : δE, in which T=
det(F)F−1 ·σ ·F−T is the second Piola-Kirchhoff stress
tensor. Recalling that the film material is incompress-
ible and the displacement is small, we can infer from
eq. (1) that det(F2) = 1, det(F) = 1, F

−T
2 = I− (∇u)T and

T : δE=σ : δ(∇u). In addition, the van der Waals inter-
action potential U(u3) is approximated by [7,8,14]

U(u · e3)≈−U0−Fu · e3−Y (u · e3)2/2, (4)

in which U0 =A/12πd
2, F =A/6πd3, and Y =A/2πd4.

Thus, minimization of the free energy (i.e. δΠ= 0)
demands ∇·σ = 0, which, after substitution of
(1) and (2), leads to

µ[λ2u1,11+λ
−1(u1,22+u1,33)]− p,1= 0,

µ[λ2u2,11+λ
−1(u2,22+u2,33)]− p,2= 0,

µ[λ2u3,11+λ
−1(u3,22+u3,33)]− p,3= 0.

(5)

The associated boundary conditions are derived as u= 0
at x3 =−h and σ · e3 = γ(u3,11+ u3,22 )e3+Fe3+Y u3e3
on the film surface.
Obviously, the above boundary value problem has a

homogeneous solution u
(0)
i = 0 and p

(0) =−F +µλ−1. To
examine the stability of the film, we search for another

solution ui = u
(0)
i +u

(1)
i and p= p(0)+ p(1) in the vicinity

of the homogeneous solution, in which u
(1)
i and p(1) are

small fluctuations of u
(0)
i and p

(0), respectively. Owing to

the incompressibility, u
(1)
i can be represented by u

(1)
1 =

−φ2,3, u(1)2 = φ1,3 and u(1)3 = φ2,1−φ1,2, with φ1 and φ2
being stream functions. We assume that φ1, φ2 and p

(1)
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are of the periodic forms as

φ1 =Φ1(x3)e
i(k1x1+k2x2),

φ2 =Φ2(x3)e
i(k1x1+k2x2),

p(1) = P (x3)e
i(k1x1+k2x2),

(6)

in which i=
√−1, and k1 and k2 are wave numbers per

unit length in the x1- and x2-directions, respectively. In
this situation, the equations in (5) become

µ(Φ1,333−l2Φ1,3 )− iλk2P = 0,
µ(Φ2,333−l2Φ2,3 )+ iλk1P = 0,
µ(Φ,33−l2Φ)+ iλP,3= 0,

(7)

where Φ= k2Φ1+ k1Φ2 and l=
√
λ3k21 + k

2
2. The solution

reads

Φ1 =−c1e−lx3 + c2elx3 + ik2(c5e−kx3 − c6ekx3)+ c7,
Φ2 =−c3e−lx3 + c4elx3 − ik1(c5e−kx3 − c6ekx3)+ c8,
P = a(c5e

−kx3 + c6ekx3),
(8)

with a= µ(λ2−λ−1)kk21 and k=
√
k21 + k

2
2. Note that

among the eight constants c1, c2, . . . and c8 there exists
the relation k2c7− k1c8 = 0, and both c7 and c8 do not
appear in the expressions of the displacement and stress.
Therefore, imposing the boundary conditions at the
film/substrate interface and on the film surface, we obtain
six homogeneous linear algebraic equations about the six
constants c1, c2, . . . and c6. To ensure the existence of
nontrivial solutions, the determinant of the coefficient
matrix must vanish, yielding

Y = k2γ+
2µl
[
(k2+ l2)f(k, l)− k4− 6k2l2− l4]

λk(k2− l2)g(k, l) , (9)

in which the functions f(k, l) and g(k, l) are given by

f(k, l) = (k− l)2 cosh[(k+ l)h] + (k+ l)2 cosh[(k− l)h],
g(k, l) = (k− l) sinh[(k+ l)h]− (k+ l) sinh[(k− l)h].

(10)
Equation (7) provides a criterion for the stability of

the pre-tensioned film: the film buckles if any positive
root of k1 and k2 exists for a fixed value of Y . The
parameter Y , increases drastically with decreasing the gap
between the contactor and film surface, is effectively a
controlling factor responsible for buckling occurrence. In
general, Y attains the minimum Yc at k1 = k

c
1 and k2 = k

c
2,

where the critical wave numbers kc1 and k
c
2 are determined

by ∂Y/∂k1 = 0 and ∂Y/∂k2 = 0. The magnitude of Yc
represents the threshold of buckling, while the wave vector
k= k1e1+ k2e2 characterizes the buckling mode. From
eq. (9) it is seen that the effect of surface energy is
incorporated only in the first term on the right side.
The term is positive, plays the role of stabilizing the film
surface [7–15].
We note that eq. (9) can be reduced to the result for

an incompressible film without pre-tension in the limit
of λ→ 1 [14], although λ> 1 has been assumed in the
foregoing derivation. In that circumstance, due to l= k,

a)

b)

Fig. 2: Influence of the principal stretch λ on the dimensionless
parameter Y H/µ in two special buckling modes: a) k= k1e1
and b) k= k2e2. In both cases the normalized surface energy
γ/µH is assumed vanishing. For fixed initial thickness H and
shear modulus µ of the film, the minimum of Y increases in
case a) while decreases in case b) with λ increasing from 1.0
to 3.0.

only one parameter k appears in the expression of Y . If the
effect of surface energy is neglected, we can show that the
critical wave number is determined solely by the initial film
thicknessH, while the buckling threshold depends on both
H and the shear modulus µ of the film. The explicit results
read kc = 2.12/H and Yc = 6.22µ/H, which are exactly
the same as those reported previously [7,8,14]. Since
the wave vector k has no a preferential orientation, the
corresponding buckling pattern lacks a long-range order.
However, the situation changes remarkably when the

film is pre-tensioned, because the symmetry of the defor-
mation is broken. For different values of the principal
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a)  λ = 1.0 b)  λ = 1.1

c)  λ = 1.5 d)  λ = 2.0

Fig. 3: Three-dimensional plots of the normalized Y -surface for different values of principal stretch λ: a) λ= 1.0, b) λ= 1.1,
c) λ= 1.5, and d) λ= 2.0. The effect of surface energy is omitted. In case a) the surface possesses a rotational symmetry about
the vertical axis, but in cases b), c), and d) the surfaces are wrapped, with the lowest points always located at the curve defined
by k1 = 0. The lager is λ, the lower is the position of the lowest point.

stretch λ, fig. 2 compares the results of the dimension-
less parameter Y H/µ calculated for two special modes of
k= k1e1 and k= k2e2, where the effect of surface energy
is omitted. We find that with increasing λ the magnitude
of Yc increases in the mode k= k1e1 while decreases in the
mode k= k2e2. This implies that the pre-tension tends to
inhibit the buckling in the former mode but facilitate the
buckling in the latter mode. Unfortunately, from eq. (9)
we are not able to obtain analytical solutions of the crit-
ical wave numbers. But an asymptotic expansion reveals
that for λ> 1 the relation in eq. (9) can be expressed by

Y = k2γ+
4µk[cosh2(kh)+ k2h2]

λ[sinh(kh)− 2kh]
+A(k)(l− k)+B(k)(l− k)2+ . . . , (11)

where A(k) and B(k) are lengthy expressions in terms of
k, H, λ, γ and µ. It can be shown that A(k) and B(k)
are positive, thus for fixed k the parameter Y reaches the
minimum Yc at k= l, or equivalently at k1 = 0. Indeed,
this is clearly visible from the three-dimensional plots of
Y as a function of k1 and k2 as given in fig. 3. Depicted
in fig. 3a is the case of λ= 1.0 (without pre-tension).

In accordance with the foregoing analysis, the resulting
Y -surface is a part of a revolution surface with the vale
along the arc determined by

√
k21 + k

2
2 = kc. Figures 3b,

c and d illustrate the cases for λ= 1.1, 1.5 and 2.0,
respectively. It is seen that the pre-tension wraps the
Y -surfaces, and the lowest point on each surface always
appears on the curve defined by k1 = 0. The larger the
principal stretch λ, the lower is the position of the lowest
point. Therefore, we conclude that for λ> 1 the critical
buckling mode of the film must be kc = k

c
2e2, meaning

that the film will buckle into stripes parallel to the tensile
direction once the contactor is brought close enough to the
film so that Y reaches the threshold Yc. The magnitude
of kc2 can be obtained numerically. For different values of
λ, the results of kc2 and the corresponding Yc are given
in figs. 4 and 5, respectively. Evidently the critical wave
number kc2 is tunable by varying the principal stretch λ. In
addition, the surface energy decreases kc2 but increases Yc,
but it does not alter the buckling pattern substantially.
In summary, we have studied the effect of pre-tension

on the buckling of a soft elastic film due to van der Waals
interaction with a rigid contactor. The main conclusion
is that a uni-axial pre-tension leads to striped buckling
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Fig. 4: Variations of the normalized critical wave number
kc2H with the principal stretch λ for different values of the
normalized surface energy γ/µH. At the same value of λ, the
normalized critical wave number for γ/µH = 0.0 (solid line) is
larger than that for γ/µH = 1.0 (dashed line).

Fig. 5: Variations of the normalized buckling threshold YcH/µ
with the principal stretch λ for different values of the normal-
ized surface energy γ/µH. At the same value of λ, the normal-
ized buckling threshold for γ/µH = 0.0 (solid line) is smaller
than that for γ/µH = 1.0 (dashed line).

mode parallel to the tensile direction, and thus can be
utilized to regulate the buckling pattern of the film. The
result may find applications in the realms where precise
surface patterns are desired, such as in the technologies
of soft lithography and atomic force microscopy-assisted
electrostatic lithography.
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