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Abstract – A (p, q)-deformation of the Landau problem in a spherically symmetric harmonic
potential is considered. The quantum spectrum as well as space noncommutativity are estab-
lished, whether for the full Landau problem or its quantum Hall projections. The well-known
noncommutative geometry in each Landau level is recovered in the appropriate limit p, q= 1.
However, a novel noncommutative algebra for space coordinates is obtained in the (p, q)-deformed
case, which could also be of interest to collective phenomena in condensed-matter systems.
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Introduction. – Noncommuting spatial coordinates
and fields can (approximately) be realised in actual
physical situations. Landau models and their quantum
Hall limit have become the focus of intense research
activity as a physical realisation of the simplest example
of noncommutative geometry [1–14]. Similar structures
also arise in specific approaches towards a theory of
quantum gravity, such as M-theory in the presence of
background fields [15] or tentative formulations of rela-
tivistic quantum theories of gravity through spacetime
noncommutativity [16].
As is well known [7], given a point particle of mass

m, charge q̄ and position �r= (x, y) moving in a plane
in the presence of a constant external magnetic field
B perpendicular to that plane, the spectrum of the
quantised theory is organised into infinitely degener-
ate Landau levels, with separation O(q̄B/m). The limit
B→∞ effectively projects onto the lowest Landau level
and is equivalent to a negligibly small mass m, i.e. m→ 0.
(a)E-mail: jobengeloun@gmail.com
(b)Fellow of the Stellenbosch Institute for Advanced Study
(STIAS) - Stellenbosch, Republic of South Africa, http://sun.ac.
za/stias.
(c)On sabbatical leave from the Center for Particle Physics and
Phenomenology (CP3), Institute of Nuclear Physics, Université
catholique de Louvain (U.C.L.) - 2, Chemin du Cyclotron, B-1348
Louvain-la-Neuve, Belgium; E-mail: Jan.Govaerts@fynu.ucl.ac.be
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Consequently in each of the projected Landau levels, one
obtains a noncommuting algebra for the space coordinates,

[x, y] =− i�

q̄B
. (1)

Historically, this is the Peierls substitution rule intro-
duced seventy years ago [17]. As a matter of fact, this
noncommuting character arises already at the classical
level in terms of the Dirac brackets associated to the
second-class constraints that follow upon taking the limit
m→ 0 in the classical Hamiltonian formulation of the
dynamics of the Landau problem and requiring finite
energy configurations.
A deformation of the quantum Hall effect has been

already considered within the Moyal approach and the
associated star product for space (time) noncommutativ-
ity, the quantum algebra and group formalisms [1,9–14]
then providing useful frameworks for developments along
such lines. More general deformations and their ensuing
space noncommutativity structures should also be of phys-
ical interest and provide further potential applications. As
was discussed in [2], it appears possible to associate to a
fully interacting system in the presence of a magnetic field
B new types of noncommutative geometries when restrict-
ing the space of quantum states to its lower energy sector.
From that point of view, when some complex dynamics
may, in some regime or within some physical limits, be
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approximated by a model which itself is exactly solvable,
explicit and analytic evaluations performed within the
latter are so much more efficient and often more transpar-
ent and instructive than any approximate or perturbative
solution or numerical simulation of the original complex
dynamics.
In this letter, we wish to point out that in the same

spirit, and based still on the Landau problem, other types
of deformations of its quantum algebra also provide for
yet other realisations of noncommuting space coordinates,
which encompass in specific limits the above by now
standard scheme (1) in which the space coordinate
commutator is purely a constant factor multiplying the
unit operator.
Given the two parameter (p, q)-deformation of the

harmonic oscillator or Fock space algebra [18,19], we
investigate the space noncommutativity which is implied
in a (p, q)-deformed Landau and quantum Hall system.
One of the aims of this contribution is to show that besides
the type of noncommutative space geometry associated
to the Landau problem and its quantum Hall effect
which appears for instance in string theory in specific
limits in the presence of background fields, consistent and
potentially interesting alternatives also exist and deserve
to be considered as well with equal interest.

The (p, q)-deformed extended Landau problem. –
Consider the Lagrange function

L=
1

2
m�̇r

2
+ q̄ �E ·�r+ q̄�̇r · �A(�r)− 1

2
k�r 2, (2)

describing the nonrelativistic motion of a charged massive
particle confined in the (x, y)-plane, submitted to static
background fields defined by a planar constant electric
field �E = (E1, E2, 0) and the vector potential �A(�r) =
�B×�r/2 associated to a constant magnetic field �B =
(0, 0, B) perpendicular to the (x, y)-plane, considered in
the symmetric gauge. A spherically symmetric interact-
ing harmonic potential is also included, with angular
frequency ω and stiffness constant k=mω2.
Introducing the displaced coordinates defined by �R(t) =

�r(t)− q̄ �E/k, which minimise the total potential energy, the
Hamiltonian associated with (2) can be put in the form

H =
1

2m

(
�P − q̄ �A

(
�R+

q̄

k
�E
))2
+
1

2
k �R2− q̄2

2k
�E2, (3)

�P = (PX , PY , 0) being the momenta conjugate to the

displaced coordinates �R= (X,Y, 0). Equivalently, the
Hamiltonian (3) expands as

H =
1

2m
(π2X +π

2
Y )+

q̄B

2m
(πXY −πYX)

+
1

2
mΩ2(X2+Y 2)− q̄2

2k
�E2, (4)

where �π= (πX , πY , 0) = �P +(q̄2/(2k)) �E× �B and Ω=
(ω2+(q̄B)2/(4m2))1/2. Note that the phase space

coordinates (�R,�π) are also canonically conjugate, with as
Poisson brackets the canonical ones, {X,PX}= 1=
{Y, PY } or {X,πX}= 1= {Y, πY }. Introducing, for1
Z =X,Y ,

aZ =

(
mΩ

2�

)1/2(
Z +

i

mΩ
πZ

)
, a± =

1√
2
(aX ∓ iaY ),

(5)

and using the above Poisson brackets, the only nonvanish-
ing brackets for the modes a± are

{a±, a†±}=−
i

�
, (6)

a†± being the complex conjugate of the variable a±.
Inverting these relations, and after some algebra, one finds
from (4)

H =
�Ω

2
(a+a

†
++ a

†
+a++ a−a

†
−+ a

†
−a−)

−�q̄B
4m
(a+a

†
++ a

†
+a+− (a−a†−+ a†−a−))−

(q̄ �E)2

2k
.

(7)

Ordinary canonical quantisation thus leads to two
commuting Fock algebras, [a±, a

†
±] = I, each associated

to each of the two helicity sectors, which diagonalise the
Hamiltonian. In particular, in the absence of both the
harmonic well potential, k= 0, and2 the external electric
field, �E =�0, energy eigenvalues are infinitely degenerate on
account of translation invariance. Without loss of gener-
ality, let us assume henceforth that q̄B/2m> 0, in which
case3 the infinite degeneracy for each value of n− � 0 is
labelled by the angular momentum L= (XπY −Y πX)
with eigenvalues �� where �= n+−n− �−n−, n+ � 0
(respectively, n− � 0) counting the excitation level in the
a†+ (respectively, a

†
−) modes, while energy eigenvalues are

E(n+, n−) = �(q̄B/m)(n−+1/2).
In this letter however, quantisation of the above clas-

sical algebra will proceed with the two parameter
deformation of the Fock algebra introduced by
Chakrabarty and Jagannathan [18], namely through
the so-called (p, q)-oscillator quantum algebra. Consider
two couples of parameters (p±, q±), with p± and q± both
real such that p± > 1 and |q±|< 1, and the generators a±,
a†± and N± which obey [18,19]

[a±, a
†
±]q± := a±a

†
±− q±a†±a± = p−N±± ,

[a±, a
†
±]p± := a±a

†
±−

1

p±
a†±a± = q

N±
± , (8)

[N±, a±] =−a±, [N±, a
†
±] = a

†
±.

1For convenience, the � factor relevant to the quantised
system is already introduced in these expressions simply as a dimen-
sional numerical constant, even though they still refer to classical
quantities.
2Indeed the naive limit k= 0 requires to first set �E =�0.
3If q̄B/2m< 0, the role of the two helicity sectors is simply

exchanged.
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Then, (8) defines two decoupled (p, q)-deformed oscil-
lators4. The two mode Fock-Hilbert space of states of
these algebras is nothing but the usual tensor product
of two (p, q)-Fock-Hilbert spaces [18] each associated to
each of the helicity sectors of the Landau problem and
given by the vacuum |0〉= |0+, 0−〉 annihilated by a± and
normalised such that a±|0〉= 0,〈0|0〉= 1, and the further
orthonormalised states defined by

|n+, n−〉= (a†+)n+(a†−)n− |0〉/
√
[n+]p+,q+ ![n−]p−,q− ! . (9)

The symbols [n]p±,q± = (p
−n
± − qn±)/(p−1± − q±) are called

(p±, q±)-basic numbers with, by convention, [0]p±,q±= 0,
and their (p±, q±)-factorial [n]p±,q± ! = [n]p±,q±
[n− 1]p±,q± !, with [0]p±,q± ! = 1. The actions of the
operators a±, a

†
± and N± on the total Hilbert space

readily follow through the usual tensor product rules and
the relations for one mode action

a±|n±, n∓〉=
(
[n±]p±,q±

)1/2 |n±− 1, n∓〉,
a†±|n±, n∓〉=

(
[n±+1]p±,q±

)1/2 |n±+1, n∓〉, (10)

N±|n±, n∓〉= n±|n±, n∓〉.
There exist formal (p±, q±)-number operators denoted by
[N±]p±,q± , or simply by [N±]± when no confusion occurs,
and defined by [N±]± = a

†
±a±. One has [N±]±|n+, n−〉=

[n±]±|n+, n−〉. A basic q-arithmetics shows that

a±a
†
±|n+, n−〉= [N±+1]±|n+, n−〉 so that the operators

a±a
†
± = q±[N±]±+ p

−N±
± are simply denoted by

[N±+1]±. Hence, (9) provides a well-defined Fock-
Hilbertian representation space of the algebra (8).
The (p, q)-deformed quantum Hamiltonian associated to

(7) is given by

Hp,q =
1

2
�Ω
∑
ε=±

(
p−Nεε +(1+ qε)[Nε]pε,qε

)

− 1
2
�
q̄B

2m

∑
ε=±

ε
(
p−Nεε +(1+ qε)[Nε]pε,qε

)− q̄2

2k
�E2, (11)

which is thus diagonalised on the basis |n+, n−〉 of the two
mode Fock-Hilbert space with eigenvalues

Ep,q(n+, n−) =
1

2
�Ω
∑
ε=±

(
p−nεε +(1+ qε)[nε]pε,qε

)

−1
2
�
q̄B

2m

∑
ε=±

ε
(
p−nεε +(1+ qε)[nε]pε,qε

) − q̄2

2k
�E2. (12)

Note that in the absence of the electric field �E and
the harmonic well, the (p, q)-deformed Landau problem

4The limit p±→ 1+ yields the q±-oscillator of Arik and
Coon [20]; likewise p± = q± gives the q±-deformed oscillator algebra
of Biedenharn and MacFarlane [21]. Finally, the algebras (8) reduces
to ordinary harmonic-oscillator algebras as q±→ 1 for p± = 1 or
p± = q±.

remains infinitely degenerate in the angular momentum
�= n+−n− �−n− for each of the Landau levels distin-
guished by n− � 0. Indeed, it may appear to be a matter
of choice whether the Hamiltonian and angular momen-
tum operators in the (p, q)-deformed case are defined
in terms of the level operators N± or the combinations
a†±a±+ a±a

†
± = [N±]p±,q± + [N±+1]p±,q± . However, the

above choice seems to be most natural in order to retain,
on the one hand, a degenerate Landau problem when
both k= 0 and �E =�0, and on the other hand, an angular
momentum spectrum which is integer valued (modulo the
� factor) as required for single-valuedness of state wave
functions. Thus the (p, q)-deformed angular momentum
operator is defined by Lp,q = � (N+−N−). As it should,
Hp,q and Lp,q indeed define commuting operators to be
diagonalised simultaneously. This is also the necessary
choice for Lp,q to belong to the (p, q)-deformed SUp,q(2)
algebra built from the above two (p, q)-deformed Fock
algebras in a manner analogous to that which leads to
a SU(2) algebra associated to two Fock algebras through
the well-known Jordan-Wigner construction [18].

Space noncommutativity. – Given the above choice
for a (p, q)-deformed quantum realisation of the classical
Landau problem, it is to be expected that even before
projecting onto any given Landau level labelled by a
specific value for n− � 0, the quantum Cartesian plane
coordinates

X =
1

2

(
�

mΩ

)1/2
(a++ a−+ a

†
++ a

†
−),

Y =
i

2

(
�

mΩ

)1/2
(a+− a−− a†++ a†−),

(13)

are no longer commuting operators whether simply for a
q-deformation or more generally given any real values for
the pairs (p±, q±) such that p± > 1 and |q±|< 1. A direct
evaluation of their commutator readily yields

[X,Y ] =
i�

2mΩ

{(
(1− q+)[N+]p+,q+ − p−N++

)

−
(
(1− q−)[N−]p−,q− − p−N−−

)}
(14)

a quantity which indeed does not vanish, unless one has
both p± = 1 and q± = 1. Likewise, even when considering
alternative commutators for the cartesian coordinates,
such as [X,Y ]q±=XY − q±Y X and [X,Y ]p± =XY −
p−1± Y X, a direct evaluation of these quantities shows
that a similar conclusion applies to these choices as
well. Consequently, the (p, q)-deformed Landau problem
is associated to a noncommutative quantum geometry in
the Euclidean plane, characterised by the commutator
(14) which itself is now a nontrivial and nonconstant
operator, in contradistinction to (1) which applies only
in the quantum Hall limit of the Landau level projected
quantities.
It is also of interest to establish the commutator of the

Cartesian coordinate operators projected onto any of the
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Landau levels, thereby deriving the quantum geometry
associated to the (p, q)-deformed quantum Hall effect. The
projector onto the Landau level n0− is simply

P(n0−) =
∞∑
n+=0

|n+, n0−〉〈n+, n0−|. (15)

The projected quantum Cartesian coordinates are thus,
with Z =X,Y ,

Z̄ = P(n0−)Z P(n
0
−) =

∞∑
n+,m+=0

|n+, n0−〉〈n+, n0−|Z|m+, n0−〉〈m+, n0−|. (16)

A direct evaluation then finds5

[
X̄, Ȳ

]
= − i
2

�

mΩ

∞∑
n+=0

|n+, n0−〉

×{[n++1]p+,q+ − [n+]p+,q+} 〈n+, n0−|, (17)

or equivalently,

[
X̄, Ȳ

]
=

i�

2mΩ

∞∑
n+=0

[n++1]p+,q+

×{|n++1, n0−〉〈n++1, n0−|−|n+, n0−〉〈n+, n0−|}

=
i�

2mΩ

(
(1− q+)[N+]p+,q+−p−N++

)
P(n0−). (18)

Again, this result fails to reduce to a constant, propor-
tional to the unit operator. However, in the double limit
such that both p+ = 1 and q+ = 1, but only in that case,
one recovers of course the result characteristic of the
quantum Hall effect in the plane, namely

[
X̄, Ȳ

]
=− i�

2mΩ
P(n0−). (19)

In the specific instance that �E =�0 and k= 0, one then
has (1).
Hence (p, q)-deformations of the Fock algebra also lead

to continuously (p, q)-deformed quantum geometries in
the context of the Landau problem and its Landau level
projected quantum Hall cousin, parametrised by a set
of four real parameters (p±, q±) such that p± > 1 and
|q±|< 1. It is only in the double limit p± = 1 and q± = 1
that the quantum geometry of the (p, q)-deformed Landau
problem becomes commuting, whereas that of the quan-
tum Hall cousin remains noncommuting, however then
with a constant commutator for the Cartesian coordinates
in the plane.

5Likewise, one could also list the results for [X̄, Ȳ ]q± or [X̄, Ȳ ]p± ,
with similar conclusions.

The (p, q)-deformed Landau problem as an
approximation model for interactions. – In fact, the
result in (18) is reminiscent of a similar one in [2] and of
the programme outlined in [2] and [3] which suggests that
interactions may be traded for noncommutative geometry
in certain regimes of interaction energies. Following the
reasoning of [2], let us consider a two-dimensional system
described by the Lagrange function

L0 =
1

2
m0�̇r

2−V (|�r |)+ q̄0�̇r · �A0(�r ), (20)

with �A0(�r ) the vector potential associated to a constant

magnetic field �B0 perpendicular to the plane, expressed in
the symmetric gauge, and V (|�r |) some given spherically
symmetric interacting potential.
In the ordinary configuration space representation in

radial coordinates, the time independent Schrödinger
equation reduces to

{
− �

2

2m0

(
d2

dr2
+
1

r

d

dr
− �2

r2

)

−� q̄0B0
2m0

�+
q̄20B

2
0

8m0
r2+V (r)

}
Rn,�(r) =En,�Rn,�(r), (21)

for any energy eigenstate |n, �〉 of definite angular momen-
tum �� such that,

〈�r |n, �〉=ψn,�(�r ) =Rn,�(r) ei�θ. (22)

Given our implicit assumption that q̄0B0/2m0 > 0, eigen-
states are such that ��−n, where n= 0, 1, 2, . . . labels
the solutions to (21) of increasing energies En,�. These
quantum numbers are related to the helicity modes of
the Landau problem through �= n+−n− and n= n−.
As discussed in [2], the Landau level projected Cartesian
coordinate operators

x̄= P(n0)xP(n0), ȳ= P(n0)y P(n0), (23)

with P(n0)=
∑∞
�=−n0 |n0, �〉〈n0, �|, possess the commutator

[x̄, ȳ] = 2i

∞∑
�=−n0

|Ω�,�+1(n0)|2

×{|n0, �+1〉〈n0, �+1| − |n0, �〉〈n0, �|} , (24)

where

Ω�,�+1(n0) = π

∫ ∞
0

dr r2R∗n0,�(r)Rn0,�+1(r), (25)

it being understood that the energy eigenstates |n, �〉
have been normalised, 2π

∫∞
0
dr rR∗n,�(r)Rn,�(r) = 1.

Comparing (18) and (24) suggests the correspondence

|Ω�,�+1(n0)|2 ←→ �

4mΩ
[�+n0+1]p+,q+ =

�

4mΩ

q�+n0+1+ − p−(�+n0+1)+

q+− p−1+
. (26)
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More generally, in the same spirit as advocated in [2]
and [3] it appears possible that a certain low-energy subset
of the energy eigenvalues En,� of the fully interacting
system with potential V (|�r |) in the presence of the
magnetic field B0 may approximately be matched onto an
analogous subset of the energy eigenvalues Ep,q(n+, n−)
of the (p, q)-deformed quantum Landau problem, for an
appropriate choice of the parameters p± and q± as well as
of the magnetic field B, the electric field modulus | �E| and
the harmonic well curvature k (in combination with the
mass and charge parameters). For example, this should be
feasible for a certain subset of the lowest energy eigenstates
of given angular momentum �= n+−n−, or likewise, for a
certain subset of the lowest Landau levels of both classes of
systems. Prospects for such an approximate representation
of an interacting system in terms of a (p, q)-deformed
Landau problem in the presence simply of a harmonic well
which lends itself to an exact resolution, appear to be even
better than for the non-deformed case [3], given the larger
number of available parameters to be adjusted, namely
p± and q±. And in all these cases, indeed the interacting
potential V (|�r |) is traded for space noncommutativity in
the fully integrable system, namely the (p, q)-deformed
quantum Landau problem in a spherical harmonic well.
A characterisation of potentials V (r) for which such an

approximate correspondence is possible, if only through
the realisation of (26), proves to go far beyond the
purposes of the present letter. An understanding in any
detail whatever of the associated issues in fact requires
a full fledged and dedicated study. One possible avenue
would be the construction of configuration space wave
functions based on wave function representations of the
(p, q)-deformed Fock algebras (8), to be restricted to a
specific subspace of states in order to identify the associ-
ated potential V (r) through the Schrödinger equation (21)
(indeed knowing one energy eigenvalue and its wave func-
tion determines V (r) up to a constant free to be chosen for
a convenient expression of the potential in terms of that
wave function and its derivatives). However the construc-
tion of wave function representations of (8) remains an
open problem of interest for its own sake. Another possi-
ble avenue could be through a perturbative approach in
V (r) starting with a harmonic potential, in order to match
a perturbation ∆V (r) to a set of parameters (p±, q±) in
a certain sector of states and energy eigenvalues. Indeed
for a harmonic potential V (r), the correspondence is exact
for all states given the choice p± = q−1± > 0, all other phys-
ical parameters being then identical for both systems.
The case of the inverse square potential should also be
of interest in this respect as a starting point for a pertur-
bative analysis, since it allows for an exact evaluation of
its energy spectrum and eigenwave functions, hence the
quantities Ω�,�+1(n0) as well [2]. Yet another approach
could be through inverse scattering techniques based on
the knowledge of the energy spectrum Ep,q(n+, n−), again
for a certain subspace of states6. Ideas for how the

6We thank an anonymous referee for this suggestion.

suggestion made in this section could be characterised in
terms of properties of the interacting potential V (r) are
thus not lacking, but they all prove to require a dedicated
study of a depth going beyond the purposes of a letter.
Nonetheless, the issue is certainly of interest and warrants
such analyses in subsequent work.
Besides the general suggestion made in this section,

another conclusion of our discussion certainly also of
interest but established explicitly however, is that space
noncommutativity as derived in this letter is of a char-
acter more general than that associated to the ordinary
quantum Hall effect as given in (1). Rather, (14) and (18)
or (24) define consistent extensions for space noncommu-
tativity directly relevant to the Landau and quantum Hall
problems in their (p, q)-deformed quantisation.
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