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Abstract – We relate the intermittent fluctuations of velocity gradients in turbulence to a whole
range of local dissipation scales generalizing the picture of a single mean dissipation length.
The statistical distribution of these local dissipation scales as a function of Reynolds number
is determined in numerical simulations of forced homogeneous isotropic turbulence with a spectral
resolution never applied before which exceeds the standard one by at least a factor of eight. The
core of the scale distribution agrees well with a theoretical prediction. Increasing Reynolds number
causes the generation of ever finer local dissipation scales. This is in line with a less steep decay
of the large wave number energy spectra in the dissipation range. The energy spectrum for the
highest accessible Taylor microscale Reynolds number Rλ = 107 does not show a bottleneck.

Copyright c© EPLA, 2007

Introduction. – Turbulence is characterized by large
fluctuations of velocity gradients which appear preferen-
tially at the smallest scales of the flow. The amplitudes
of these events exceed the mean values by orders of magni-
tude which is known as small-scale intermittency [1,2]. It
is also believed that these intensive fine-scale fluctuations
are intimately connected with the nonlinear cascade-like
transfer of kinetic energy through the hierarchy of eddy
structures that fill the fluid on larger scales [3–7]. A better
understanding of fluid turbulence as a whole requires
thus a detailed resolution of the intermittent dynamics at
the small-scale end of the inertial range. In other words,
it is necessary to determine how deep into the beginning
dissipation range the roughest filaments from the inertial
range can sweep and how they affect the spectral decay of
turbulent fluctuations with increasing Reynolds number.
This can also be important for the mixing in reacting and
non-reacting flows at high Schmidt number [8,9] where
a significant fraction of stirring of the concentration field
takes place in the dissipation range of the flow. Such
a study requires that the steepest gradients and their
statistics are well resolved. Although significant progress
in measurement techniques has been made [10], the finest
structures remain still spatially unresolved in experiments.
In this letter, we present numerical simulations of

forced homogeneous isotropic turbulence that unravel
the dynamics in exactly the region where inertial and
dissipation ranges match, both in physical and Fourier
space. In order to study the fine-scale structure and their

statistics, a grid resolution is applied which exceeds that
of standard simulations by an order of magnitude. In
particular, the following questions will be answered. What
are the finest spatial scales across which large-amplitude
gradient events evolve? How are these scales distributed
as a function of the Reynolds number? Is consequently
the large wave number behaviour of the energy spectra in
the dissipation range Reynolds-number-dependent?
The large wave number behaviour of the turbulent

fluctuations at the smallest scales is a long-standing
problem. Kolmogorov postulated 65 years ago a universal
form of the decay of the energy spectrum that goes deep
down into the dissipation range [11]. Since then several
analytical attempts have been made to determine the
spectrum. The works left unspecified constants [12–15]
or considered an infinitely extended range of excited
scales [16,17]. Numerically, the time advancement in the
dissipation range is very challenging since a significant
fraction of the computational resources has to be spent
for the resolution of the tiny amplitudes [18–20].
The classical theory of turbulence predicts a mean scale

at which the turbulent cascade ends and the flow viscosity
starts to dominate. This scale is known as the Kolmogorov
length [11]

ηK =
ν3/4

〈ε〉1/4 , (1)

where ν is the kinematic viscosity of the fluid. It is derived
by a dimensional estimate and does not capture for the
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observed intermittency of the velocity gradients. We see
that the energy dissipation rate, that probes the velocity
gradient magnitude, enters the definition of ηK as a mean,
〈ε〉. On the one hand, there are very intense gradients in
the form of thin and stretched vortex tubes that seem
to have diameters around ηK , or even less. On the other
hand, ambient regions will exist with typical spatial vari-
ations larger than ηK . A whole range of local dissipation
scales around the classical Kolmogorov length follows
from the picture. This idea was put forward first within
the multifractal formalism [3,4]. However, a direct analysis
of the scales from data records remained very difficult,
simply because these structures were not resolved.
Yakhot derived an estimate that connects a dissipation

scale η with a velocity increment uη = |u(x+ η)−u(x)|
across this scale from the equations of motion (see [21]
and references therein). It reads

ηuη ≈ ν. (2)

Technically, eq. (2) is derived from a local kinetic energy
balance by a so-called point-splitting procedure [22–24].
Equation (2) tells us that η is a field fluctuating in space
and time and suggests an implicit way to determine the
local dissipation scales η in numerical simulations, by
velocity increments over Kolmogorov and sub-Kolmogorov
distances. Relation (2) can be also obtained by equating
the convective time scale, η/uη, and the dissipation time
scale, η2/ν, a step which is at the core of the multifractal
approach of Paladin and Vulpiani [3].
The probability density function (PDF) of the local

dissipation scales will be denoted as Q(η) in the following.
In fig. 1, we show an instantaneous snapshot of two isolevel
sets of the field η where the isosurfaces in red are nested
in the transparent gray ones. The figure clearly underlines
the fluctuating character of the field η.
Once one accepts the concept of local dissipation scales,

the question on the smallest local dissipation scale arises.
This scale can be determined by matching the inertial
and dissipation range dynamics in the equations for the
longitudinal increment moments of order 2n which are
defined as

S2n(r) = 〈u2nr 〉= 〈|u(x+ r)−u(x)|2n〉, (3)

where u is the turbulent velocity field projected onto r and
r= |r| [7,24]. The matching scale becomes order dependent
and is given by

η2n =LR
1

ζ2n−ζ2n+1−1 . (4)

Here, L is the integral scale and R= σLL/ν the corre-
sponding large-scale Reynolds number with σL = 〈u2L〉1/2.
The exponents ζn determine the scaling behaviour in the
inertial range of turbulence, i.e. Sn(r)∼ rζn for ηK < r <
L. In the limit of n→∞ we expect ζ2n ≈ ζ2n+1 and thus

ηmin =LR
−1 . (5)

Fig. 1: (Color online) Spatial distribution of local dissipation
scales. An instantaneous snapshot of a simulation with 10243

grid points is shown (see Run 4 in table 1). Isosurfaces are
plotted for two levels, η= 4ηK/3 (shaded red) and 5ηK/3
(transparent gray). The isosurfaces for the smaller η isolevel
are nested within those for the larger one and are significantly
sparser distributed in space. The figure underlines the fluctu-
ating character of the local dissipation scale field.

Table 1: Parameters of the direct numerical simulations: Rλ =√
15/(〈ε〉ν)σ2L is the Taylor-microscale Reynolds number, and

R= σLL/ν the large-scale Reynolds number with the integral
scale L and σ2L = 〈(uL)2〉 (see eq. (3)). The spectral resolution is
indicated by kmaxηK , where kmax =

√
2N/3. The mean energy

dissipation rate 〈ε〉 is 0.1 for all cases.

Run N ν L Rλ R kmaxηK
1 512 1/30 1.02 10 12 33.6
2 1024 1/75 0.92 24 32 33.6
3 1024 1/200 0.76 42 74 15.9
4 1024 1/400 0.69 65 143 9.6
5 2048 1/400 0.69 64 140 19.2
6 2048 1/1000 0.66 107 347 9.7

One obtains a steeper decrease with respect to the
Reynolds number as for the Kolmogorov scale, ηK =
LR−3/4. The same relation (5) follows in the multifractal
approach by Paladin and Vulpiani [3] for the roughest
increments with Hölder exponents h= 0.

Numerical model. – The three-dimensional Navier-
Stokes equations for an incompressible flow are solved.
The direct numerical simulations are based on the
pseudospectral method with fast Fourier transformations
and a 2/3 de-aliasing. The simulation domain is a periodic
cube with a volume of V = (2π)3. The velocity field is kept
in a statistically stationary state by a large-scale volume
forcing that is added to the r.h.s. of the Navier-Stokes
equations. It injects kinetic energy into the flow at a fixed
rate, εin, and thus prescribes the mean energy dissipation
rate. In the case of statistical stationarity the kinetic
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energy balance reduces to εin = 〈ε〉. More details are
found in [7]. The turbulence is homogeneous and locally
isotropic. Some parameters of the present simulations
are listed in table 1. The standard spectral resolution is
determined by the criterion kmaxηK � 1.5 [25]. It is seen
from the table that our applied resolution is at least by a
factor of eight better than the standard case.

Distribution of local dissipation scales. – The
derivation of Q(η) starts with relation (2) which connects
velocities and scales at the small-scale end of the inertial
range [21]. Q(η) can then be calculated from the PDF
of the longitudinal velocity increments across distances
η which is conditioned on uηη/ν = c (see eq. (2)). c is a
constant O(1) and it follows

Q(η) =

∣∣∣∣duηdη
∣∣∣∣P
(
uη|uηη
ν
= c
)
=
cν

η2
P
(
uη|uηη
ν
= c
)
. (6)

The PDF of the velocity increments is obtained from a
Mellin transform [26]. In ref. [27] Mellin transforms were
used for the first time in turbulence to construct PDFs
from increment moments by

P (uη) =
1

iπuη

∫ +i∞
−i∞

dn u−nη 〈unη 〉 . (7)

Three points are necessary in order to make progress.
Firstly, prefactors in the scaling laws for the increment
moments are fixed by recognizing their Gaussian statistics
at the largest scale of the flow, L. Secondly, the inertial
cascade range scaling law for the increment moments is
still valid at the small-scale end of the inertial range such
that we can write

〈u2pη 〉= (2p− 1)!!σ2pL
( η
L

)ζ2p
. (8)

Thirdly, the unknown anomalous scaling exponents ζ2p are
approximated well with the polynomial ζ2p = 2ap− 4bp2
for the lowest orders, p < 10 [21,24]. One finds a= (1+
9b)/3 = 0.383 and b= 0.0166 in order to satisfy the exact
relation ζ3 = 1. The Mellin transformation integral is then
evaluated by a saddle point approximation and results for
a given large-scale Reynolds number R to the following
indefinite integral:

Q(η) =
1

πη
√
b log(L/η)

∫ +∞
−∞

dx

× exp


−x2−

(
log
(√
2xR
c

(
η
L

)a+1))2
4b log(L/η)


 (9)

which can be analyzed by numerical quadrature. The
distribution is supported for scales 0< η <L only.

Comparison with numerical results. – The calcu-
lation of the PDF Q(η) from the simulation data works
as follows. A scale � is fixed as an integer multiple of
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Fig. 2: Comparison of numerical and theoretical results
from [21] (dashed lines) for the probability density function of
the local dissipation scale field η at a given Reynolds number,
Q(η). Data are for Runs 1 (circles), 4 (asterisks) and 6 (squares)
as given in table 1. The values for c are 2.6 (Run 1), 4 (Run 4),
and 4 (Run 6) respectively (see eq. (9)). All other parameters
in DNS and (9) are identical. For a better visibility, the data
for Runs 4 and 6 are shifted upwards by one and two orders of
magnitude, respectively. Inset: comparison ofQ(η) for the stan-
dard grid resolution with kmaxηK = 1.2 and N = 128 (squares)
and the present very-high-resolution case (solid line). Data are
for Run 4.

the grid spacing ∆, i.e. �= n∆. The longitudinal velocity
increments with respect to � in all three directions are
determined at each grid site. If �u�/ν ≈ 1, the grid site
contributes to Q(�). The resulting distributions are shown
in fig. 2. The inset underlines the necessity for the huge
spectral resolution applied here. We compare a standard
resolution case with the present one (which is eight times
larger) while leaving all other parameters the same. The
whole left tail of the local dissipation scale distribution
cannot be resolved in the standard resolution case.
The main picture of the figure compares our data

for Runs 1, 4 and 6 (see table 1) with the theoretical
prediction from (9). The distributions are rescaled by
the scale η0 that arises from eq. (4) when inserting
ζ2p = 2ap− 4bp2 to

η0 �LR− 1
1+a =LR−0.72 , (10)

since a= 0.383. We see that the distributions coincide
quite well in the core and for most of the right tail
of the PDF with the analytical shape. As stated in
the caption, the parameter c becomes independent of
the Reynolds number R which supports the use of the
scale η0 for the rescaling. The smallest Reynolds number
case (Run 1) however deviates. The reason might be the
Gaussian statistics of the velocity gradients which changes
to non-Gaussian for Rλ > 10–15 (see ref. [7] for a detailed
investigation on this subject).
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Table 2: Ratio of the finest local dissipation scale ηmin to the
box size Lx = 2π following from the DNS data and from the
estimate in [21], respectively. Lx is taken in order to show that
ηDNSmin /Lx is resolved, i.e. larger than 1/Nx. Furthermore, it
provides an independent scale being the same in all runs.

Rλ 10 24 42 64 107

ηDNSmin
1
51

1
131

1
407

1
576

1
1194

ηmin =LR
−1 1

74
1
218

1
613

1
1295

1
3232

Furthermore, we observe that the distributions start to
deviate at the largest scales from the analytical shape
for the two larger Reynolds numbers. This is attributed
to the periodic boundary conditions in the simulations
which affect the velocity increments taken over large
distances. We have checked this by going up to velocity
increments across the whole box length. Nevertheless, the
slope of the algebraic decay for scales η > ηK does not
vary significantly with the Reynolds number, neither for
the data nor for the theory. This part of the PDF which
corresponds with increments over larger distances remains
almost insensitive to an increase of Reynolds number. Note
that all data collapse there. They have been shifted in
the figure for a better visibility. Stronger deviations arise
in the left tail, i.e. for the finest scales. The analytical
prediction (9) is limited here. A next step would be
to include higher-order corrections to the saddle point
approximation [27].
The numerical data for the left tail show a slight

Reynolds number dependence. The value Q(η/η0 = 0.6)
grows from approximately 10−7 at Rλ = 65 to 10−5 at
Rλ = 107. The scales for the smallest Reynolds number
go barely below η0. This indicates an increasing prob-
ability of very fine sub-Kolmogorov scales to appear. It
is in line with increasing small-scale intermittency of the
velocity gradients which has been studied in [7]. The
small-scale end of the support in each of the PDFs is
taken as the scale ηDNSmin . As discussed in the introduc-
tion, the theoretical model [7,21] predicts ηmin =LR

−1

(see eq. (5)). Table 2 compares this estimate with our find-
ings. We see that ηDNSmin decreases more slowly than the
theoretical prediction. The value of ηmin reached 0.6ηK
for the largest Reynolds numbers. To conclude, ever finer
sub-Kolmogorov scales are excited for increasing R, but
not as pronounced as predicted by theory.
The first moment of the distributions Q(η) gives a mean

dissipation scale which is always larger than ηK . We find
〈η〉= 2.5, 6.2 and 8.1 for Rλ = 10, 65 and 107, respectively.
For the range of accessible Reynolds numbers we thus
observe an increase of the mean towards a scale ∼ 10ηK
which is the generally expected crossover scale from the
inertial to the viscous subrange [28].

Far-dissipation range energy spectra. – The
central question that was addressed in [5,15–17,29] is if
the increasing small-scale intermittency in physical space
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Fig. 3: (Color online) Compensated energy spectrum for Run 6.
The red lines are 183 individual energy spectra saved during the
time integration which took 4 large-scale eddy turnover times,
Teddy = 〈u2i 〉/L. The black line is the mean of all these spectra
which is used for the subsequent analysis. The dashed line is
drawn at 2. The inset magnifies the range of wave numbers
that should show a bottleneck effect.

manifests as well for the spectra in the crossover to the
dissipation range or even in the far-dissipation range.
Figure 3 shows the instantaneous compensated energy
spectra for the run at the largest Reynolds number. It
provides information about the variation of the spectra
in the dissipation range and how this adds up to a mean
spectrum that will be used for the following analysis.
Many numerical studies of the energy spectra have been
focussed on the bottleneck phenomenon (see, e.g., [30]).
It is thought to result from a depletion of the nonlinear
Fourier mode interaction at higher wave numbers such
that non-local mode couplings become more dominant.
We did not observe a bottleneck for our spectra (see
inset of fig. 3). The reason can be the moderate Reynolds
numbers which are accessed here. It can however also
be that the significantly larger range of resolved Fourier
modes in the viscous range diminishes this effect.
Since the moderate Reynolds numbers prevent the

quasi-algebraic scaling analysis from [5], we study the
spectral decay with respect to measures that follow from
the spectra themselves [29]. The beginning of the dissi-
pation range can be set at k= kp, where k

2E(k) has a
maximum. In fig. 4, the dissipation spectra for the three
largest R are rescaled by the corresponding kp. The dotted
line indicates the data window from [29]. While the energy
spectra collapse quite well within the dotted box, differ-
ences arise for the largest resolved wave numbers. This
indicates a deviation from the universality postulate made
in the classical theory for the large wave number decay
of the energy spectra [11]. We wish to stress that our
Reynolds number might still be too small for a firmer
conclusion.
The results from fig. 4 suggest a closer analysis of the

Reynolds number dependence of the decay of the spectra

54001-p4



Sub-Kolmogorov-scale fluctuations

−4 −3 −2 −1 0 1 2 3 4 5
−70

−60

−50

−40

−30

−20

−10

0

lo
g[

(k
/k

p)2 E
(k

)/
E

(k
p)]

log[k/k
p
]

 

 

R
λ
=107

R
λ
=64

R
λ
=42

−4 −2 0 2
−4

−2

0

lo
g[

(k
/k

p)2 E
(k

)/
E

(k
p)]

log[k/k
p
]

Fig. 4: Rescaled dissipation spectra for different Reynolds
numbers. Wave numbers are normalized by kp for which k

2E(k)
becomes maximal. The dotted-line box indicates the data
window from [29] which is shown in the inset. The ratios kpηK
were found to 0.167, 0.179, and 0.160 for Rλ = 42, 64, and
107, respectively. The numerical precision of the DNS at such
small amplitudes was tested by a verification of the viscous
decay law of single Fourier modes without nonlinear advection,
u̇k(t) =−νk2uk(t).

in the far-dissipation range. The following form of the
spectral decay for k̃= kηK > 1 is used [16–20]:

Ẽ(k) =
E(k)

ν5/4〈ε〉1/4 = F (k̃) = k̃
α exp(−βk̃), (11)

where α and β are Reynolds-number-dependent dimen-
sionless constants. The exponential term can be motivated
from Stokes eigenfunctions in the viscosity-dominated
regime of the Navier-Stokes dynamics [14]. The power law
term k̃α was calculated by the direct interaction approxi-
mation (DIA) to α= 3 [13]. Numerical experiments at low
Reynolds numbers demonstrated later that α can exceed
3 due to small-scale intermittency which is not contained
in the theory [18]. Equation (11) is transformed into the
following local slope form:

d log(Ẽ(k))

d log(k̃)
= α−βk̃ (12)

which allows for direct determination of the two constants
α and β by a least-square fit. The upper picture of
fig. 5 shows the local slope of the large wave number
spectral decay. The two lower pictures in the same figure
list the results for both coefficients, αloc and βloc. We
have performed therefore local least-square fits to (12)
in the interval [k̃− 1/2, k̃+1/2]. It should be stressed
once more that the present data allow a systematic
study of the dissipation range decay over an order of
magnitude of Taylor microscale Reynolds numbers. The
results are consistent with the findings from refs. [18–20].
The exponent α, which determines the nature of the
singularity in the Euler case, remains smaller zero for
Rλ > 24 which results in a convex shape of the dissipation
range spectrum. Interestingly, this is the range of Rλ
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Fig. 5: Decay of the energy spectra E(k) in the dissipation
range for different Reynolds numbers. (a) Local slope of the
spectrum as a function of the wave number k̃= kηK . The
symbols for the different Taylor microscale Reynolds numbers
are indicated in the legend of the figure. The spectra have been
shifted with respect to each other for better visibility. (b) Local
exponent αloc as a function of the wave number k̃. Least-square
fits to (12) are done in the interval [k̃− 1/2, k̃+1/2]. (c) Local
exponent βloc as a function of k̃.

for which velocity gradients are clearly non-Gaussian [7].
The overall magnitude of the exponent β decreases for
growing Reynolds number. A saturation of this decrease
can be detected for the two largest Reynolds number runs.
This would be consistent with a saturation to a constant
magnitude which was predicted by Kraichnan [13]. Neither
for α nor for β a systematic behaviour with respect to
the wave number k̃ is observed. The limited range of sub-
Kolmogorov scales that can be resolved is one reason.
Moreover, it should be stressed that the local fits of the
exponential decay require a very high numerical accuracy
as has been demonstrated in Pauls et al. [31]. The double
precision floating accuracy which we can provide only
was not sufficient to apply more sophisticated local fit
procedures to (11) [31,32]. Finally, it was also checked that
the rescaling with η0 instead of ηK does not alter the fit
results significantly.

Concluding remarks. – The finest-scale intermittent
fluctuations of fluid turbulence have been studied with a
spectral resolution never applied before. They are associ-
ated with a whole range of local dissipation scales rather
than a mean dissipation scale —the Kolmogorov length
ηK . We find that the increase of small-scale intermittency
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with increasing Reynolds number goes in line with an
increasing spread-out of the local dissipation scales into
the dissipation range. The growth of this scale range with
respect to the Reynolds number is small, but present. This
is consisitent with a logarithmic dependence of the exten-
sion of the intermediate dissipation range on the Reynolds
number as proposed in [6]. Furthermore, we detected a
growing amplitude of sub-Kolmogorov-scale fluctuations
which manifests in a slower exponential decay of the
energy spectra in the large wave number range. Both
numerical results confirm indications from other studies
that increasing small-scale intermittency affects a growing
number of scales in the dissipation range that are expected
to be Reynolds-number-independent (and thus universal)
in the classical theory of turbulence.
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