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Abstract – In this letter we consider asymptotic symmetries of the Korteweg de Vries equation,
the prototype of the integrable equations. While the reduction of the KdV with respect to point
and generalized symmetries gives equations of the Painlevé classification, we show here that
the reduction with respect to some asymptotic symmetries violates the Ablowitz-Ramani-Segur
conjecture and gives an ordinary differential equation which does not possess the Painlevé property.
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Introduction. – According to the Ablowitz, Ramani,
Segur (ARS) conjecture [1], all ordinary differential
equations (ODE) obtained by an exact symmetry reduc-
tion [2] of an integrable partial differential equation have
the Painlevé property. The Painlevé property for ODE
is defined by looking at the analytic properties of the
solution in the complex plane [3,4]. Fixed singularities
of the solutions occur at points where the coefficients of
the equation are singular while movable singularities of
the solutions are those whose location depends just on the
initial conditions. The ODE is said to possess the Painlevé
property if all its movable singularities are simple poles.
The ARS conjecture also states that the inverse is

true, i.e. if all the symmetry reductions of a given
PDE have the Painlevé property then the PDE should
be integrable. Linearizable equations may not have the
Painlevé property [5].
Here we consider the reduction of a nonlinear integrable

PDE with respect to some of its asymptotic symmetries,
i.e. when the nonlinear PDE reduces to an ODE in the
asymptotic regime of one of its independent variables or
in a combination of them, not necessarily to a point at
infinity. We will show that in this case the resulting ODE
may not have the Painlevé property.
At first we give a brief introduction of the asymptotic

symmetries and then we consider the reduction of the
Korteweg de Vries equation (KdV) with respect to some
of its asymptotic symmetries.

(a)E-mail: levi@roma3.infn.it
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Asymptotic symmetries. – In most physical applica-
tions one is mainly interested in the asymptotic behavior
of the solutions of the system and not in the way in which
it goes to it. So often, even if the modeling equations
are completely integrable and thus we can get explicit
exact solutions, these may be complicated and may not
provide the information we need. This is also the case of
the description of many physical systems given through
the KdV. The KdV equation is integrable through a
Spectral Transform [6] and we have an infinite class
of explicit solutions, the N soliton solutions. The time
asymptotic behavior of the generic solution of the KdV is
easy to describe as it is just the linear superposition of N
solitons corresponding to the N bound states of the initial
perturbation as the rest decays asymptotically. These
asymptotic solutions can be obtained by solving a simple
ODE. This well known result shows that in the asymptotic
regime the solution is usually simpler and is described by a
simpler equation than the one which governs the behavior
of the given nonlinear system for all times and in all space.
So it seems natural to look for solutions just in the

asymptotic regime and, as exact solutions are associ-
ated to symmetries, to consider the construction of solu-
tions invariant with respect to asymptotic symmetries.
The notion of asymptotic symmetries has been developed
in many articles [7–18] in connection mainly with phys-
ical applications. It is strictly related to the application
of the renormalization group and singular perturbation
theory [14] and it appeared in the work of Penrose [17]
when dealing with asymptotic behaviour in special and
general relativity. In the study of asymptotic solutions of
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differential equations with the symmetry methods proba-
bly the first coherent presentation has been given by Gaeta
in [9] and this is our starting point.
The symmetry method for the study of differential

equations, both ordinary or partial differential equations
and even difference equations [2,19], has proven in recent
years to be one of the most powerful ways to get explicit
physically relevant exact solutions for non-linear prob-
lems. The Lie symmetries of an equation are obtained in
a straightforward way by requiring that the infinitesimal
invariance condition be satisfied. Asymptotic symmetries
are, in this context, not symmetries of the given system
in its whole domain of definition but are symmetries valid
only in some restricted region A of the space M where
the independent variables of our problem are defined. The
region A will usually be a lower dimensional space than
M. For asymptotic symmetries the infinitesimal invari-
ance condition will be satisfied only asymptotically, i.e.
when the independent variables are restricted to the region
A. This implies that, given a one parameter symmetry
group, we will be just looking for transformations which
leave the differential system invariant in A. The definition
of the region A depends on the symmetries we consider.
This definition is better clarified by giving a procedure

to look for asymptotic symmetries:

– Choose an infinitesimal transformation depending on
a set of arbitrary parameters {αi} and get from it the
symmetry variables by integrating the corresponding
characteristics.

– Reduce the differential system with respect to the
infinitesimal transformation and get the region A
where the reduced differential system is rewritten just
in terms of the corresponding symmetry variables.
If there exists a region A and a set of values for
the parameters {αi} where this procedure can be
carried out then we say that we have an asymptotic
symmetry.

As a simple example and to state the notations we
will use in the sequel, let us look for some asymptotic
symmetries of the heat equation

ut−uxx = 0. (1)

Dilation transformations. The vector field

X = x∂x+2t∂t,

provides a dilation symmetry [2] of the heat equation (1).
We modify this vector field introducing a parameter α as
follows:

X(α) = x∂x+αt∂t, (2)

The similarity variable is

ξ =
xα

t
. (3)

Inserting the similarity variable (3) into the heat equation,
we get

α2v′′+ [α(α− 1)ξ−1+ ξ−1+2/αt−1+2/α]v′ = 0. (4)

This equation contains t, although the function v(ξ)
depends only on ξ. The dependence on t in eq. (4) is
removed if α= 2. In this case we have an exact symmetry
reduction of the heat equation:

4v′′+(2ξ−1+1)v′ = 0.

The corresponding solution of the heat equation is

u(x, t) =

∫ x√
2t

0

e−z
2

dz.

We can also consider eq. (4) in the limit t→∞. In this
case, if α> 2, we get the ordinary differential equation

v′′+
α− 1
α ξ
v′ = 0,

whose solution is given by

v(ξ) =C1ξ
1/α+C2.

Consequently, we can conclude that

u(x, t) =
x

t1/α
(5)

is an explicit asymptotic solution of the heat equation
when t goes to infinity with the asymptotic symmetry (2).

Galilean transformations. The vector field

X = 2t∂x−xu∂u,
provides another symmetry [2] of the heat equation. The
modified vector field is

X(α) = 2t∂x+αxu∂u.

The similarity variables associated to this vector field are

y= t, v= ue−αx
2/4t. (6)

If we substitute (6) in the heat equation (1), with v= v(y),
we obtain

v′− α
2y

(
1+ (α+1)

x2

2y

)
v= 0. (7)

We get the usual result [2] v= v0/
√
y when α=−1. For

arbitrary α, we cannot obtain an acceptable equation
to be considered as an asymptotic limit of the heat
equation. When x goes to infinity, both the similarity
variables (6) and the resulting eq. (7) are meaningless.
We can however consider the limit x→ 0, which gives an
asymptotic solution v= v0y

−α/2 valid for any α, different
from the exact solution corresponding to α=−1.
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KdV symmetries. – We will apply the previous ideas
to the KdV equation

ut−uxxx+6uux = 0. (8)

The classification of the group-invariant solutions of
the KdV equation is very well known (see [2] for the
details). The obtained symmetries are given by scaling:
D= x∂x+3t∂t− 2u∂u, Galilean boosts: B = 6t∂x+ ∂u,
time translations: T = ∂t, space translations: S = ∂x and
their combinations.
The scaling invariant solution, u= t−2/3v, y= xt−1/3,

is written in terms of the second Painlevé transcendent,
solution of the nonlinear equation

wyy = 2w
3− 1
3
yw+ k, (9)

where v= dwdy +w
2. The Galilean boost invariant solution

is given by u= x+k6t , the time translation invariant solution
is given in terms of the Weierstrass function,

u= ℘

(
x√
2
+ c; g2, g3

)
,

and the space translation invariant solution is a constant.
We can write solutions invariant with respect to a combi-
nation of the Galilean boost and time translation, B+T .
In this case the invariant solution u= v+ t, y= x− 3t2,
is written in terms of the first Painlevé transcendent,
solution of the nonlinear equation

vyy − 3v2+ y+ k= 0.
In the following we will consider at first asymptotic

symmetries of dilation type which provide solutions
described by linear ODEs. Then by considering a
rotation-like symmetry we get a reduced nonlinear
equation which has NOT the Painlevé property.

Dilations. The first vector field we will consider is a
scale transformation, where α1 and α2 are two arbitrary
parameters:

X = α1t∂t+x∂x+α2u∂u.

Their invariants are

ξ =
x

t1/α1
, u= tα2/α1F (ξ).

Substituting u into the KdV equation (8), we get

F ′′′(ξ)− 6F (ξ)F ′(ξ)t(α2+2)/α1

+
1

α1
[ξF ′(ξ)−α2F (ξ)] t(3−α1)/α1 = 0. (10)

For finite t the equation is inconsistent, since F depends
only on ξ, unless α1 = 3, α2 =−2, which corresponds to
the well-known dilation symmetry of the KdV equation [2].
In this case eq. (10) is consistent as it does not depend on t,

F ′′′− 6FF ′+ ξ
3
F ′+

2

3
F = 0,

and it reduces to the second Painlevé equation (9). An
exact solution of the KdV equation in this case is given
by u= x

6t corresponding to F (ξ) =
1
6ξ.

For arbitrary values of α1, α2, we get a compatible
equation only if we can eliminate the terms containing
t, for example by choosing t going to infinity. In this case,
we need the exponents of t to be negative. This means

3−α1
α1

� 0, α2+2

α1
� 0,

with solutions

α1 � 3, α2 �−2, or α1 < 0, α2 �−2. (11)
The possible cases are

a) When α1 and α2 satisfy any of the inequalities
(11), with α1 �= 3 and α2 �=−2, the last two terms
of equation (10) vanish in the limit t→∞ and the
resulting equation is simply

F ′′′ = 0,

with solution

F (ξ) = c1+ c2ξ+ c3ξ
2.

Then, the solution for u is given by

u= c1t
α2/α1 + c2xt

(α2−1)/α1 + c3x2t(α2−2)/α1 .

b) If α1 = 3 and α2 <−2, eq. (10) (in the limit t→∞) is

F ′′′+
ξ

3
F ′− α2

3
F = 0,

which is also a linear equation. The solution of this
equation is written in terms of a combination of
hypergeometric functions of argument − 127ξ3.

c) If α1 > 3 or α1 < 0, and α2 =−2, the equation (in
the limit t→∞) is

F ′′′− 6FF ′ = 0.
This is the same equation one can find using
the time translation invariance. The solution is
written in terms of a Weierstrass elliptic function
℘(ξ/

√
2; g2, g3).

If α1 = 0 then t is an invariant variable and the other
invariant is u= xα2G(t). The only nontrivial result in this
case is obtained when α2 = 1. In this case the asymptotic
equation (when x→∞) for G reads

G′(t)+ 6G2(t) = 0,

and the general solution is

u(x, t) =
x

6(t− t0) .

Note that all these asymptotic solutions, obtained by a
method close to the reduction method for true symmetries,
can be expressed in terms of known functions, satisfying
equations sharing the Painlevé property.
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Rotations. To get a nontrivial nonlinear equation, let
us consider a space-time rotation plus a dilation of the
dependent variable. In this case, the vector field is

X = x∂t− t∂x+αu∂u. (12)

If we integrate eq. (12), the invariants are

ρ=
√
x2+ t2, θ= arctan

t

x
, u= F (ρ)eαθ.

Writing the KdV equation in terms of these variables
we get

F ′′′+
3 tan θ

ρ
(tan θ−α)F ′′+ 6α

ρ
eαθ(tan θ sec2 θ)F 2

+

(
1

2ρ2
[9α cos 2θ+3(α2− 1) sin 2θ− 2ρ2+3α] tan θ

− 6eαθF
)
(sec2 θ)F ′+

α sec3 θ

4ρ3
[(α2− 8) sin 3θ

+6α cos 3θ− 3α2 sin θ− 2(2ρ2+3α) cos θ]F = 0.
The only mathematically meaningful limit which allows
us to get a consistent equation for F (ρ) is obtained when
t→ 0. In this case we get

F ′′′−
(
6F ′+

α

ρ

)
F = 0, (13)

which exists independently of the value of α. Equation (13)
has no symmetries, unless α= 0.
A Painlevé analysis of eq. (13) using the Baldwin-

Hereman program [20] shows that, unless α= 0, eq. (13)
has not the Painlevé property.
In the case α= 0, the resulting equation

F ′′′− 6F ′F = 0, (14)

can be easily integrated as it has a two-parameter group
of symmetries, translations and dilations. The solution
of eq. (14) is an elliptic function and it passes the
Painlevé test.

Conclusions. – In this work we have considered the
asymptotic symmetries for the KdV equation. As is well
known all symmetry reductions of KdV are given by ordi-
nary differential equations belonging to the Painlevé class.
Here we have shown that the reduction by asymptotic
symmetries in some cases can give ordinary differential
equations which are not in the Painlevé class. This opens a
new perspective in the study of the solutions of integrable
systems, as we may not always have analytic solutions in

the asymptotic regime. A more detailed analysis of this
problem may provide new interesting results in the rela-
tion between integrable partial differential equations and
equations of Painlevé type.
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