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Abstract – We study the effect of strong heterogeneities on the fracture of disordered materials
using a fiber bundle model. The bundle is composed of two subsets of fibers, i.e. a fraction 0� α� 1
of fibers is unbreakable, while the remaining 1−α fraction is characterized by a distribution
of breaking thresholds. Assuming global load sharing, we show analytically that there exists a
critical fraction of the components αc which separates two qualitatively different regimes of the
system: below αc the burst size distribution is a power law with the usual exponent τ = 5/2,
while above αc the exponent switches to a lower value τ = 9/4 and a cutoff function occurs with
a diverging characteristic size. Analyzing the macroscopic response of the system we demonstrate
that the transition is conditioned to disorder distributions where the constitutive curve has a single
maximum and an inflexion point defining a novel universality class of breakdown phenomena.

Copyright c© EPLA, 2008

Introduction. – Damage and fracture of materials
occurring under various types of external loads is a very
important scientific problem with an enormous technolog-
ical impact. During the last two decades the application
of statistical physics has revealed that heterogeneities of
materials’ microstructure play a crucial role in fracture
processes [1]. To capture the effect of disorder, recently
several stochastic fracture models have been proposed
such as the fiber bundle model (FBM) and lattice models
of fuses or springs [1–7]. Based on these models, analytic
calculations and computer simulations revealed that
the macroscopic fracture of disordered materials shows
interesting analogies with phase transitions and critical
phenomena having several universal features independent
of specific material details [1,4–6,8–10]. It has been found
that under a slowly increasing external load macroscopic
failure is preceded by a bursting activity due to the
cascading nature of local breakings [3,4]. Since the bursts
can be recorded experimentally by the acoustic-emission
technique, these precursors addressed the possibility of
forecasting the imminent failure event [11–14]. The size
distribution of bursts was proven to be a power law
with an exponent which is universal for a broad class of

disorder distributions [3,4]. Recently, the robustness of
the universality class has been tested by mixing different
types of disorder distributions [15], and by introducing
a gap into the domain of strength values [16]. However,
a relevant change of the burst size distribution was only
obtained when introducing a finite lower threshold for
the strength disorder. Increasing the threshold strength
a crossover occurs from a power law of exponent 5/2
to another one with a lower exponent 3/2 [14,17,18].
Divakaran and Dutta have studied the critical behaviour
of a random fiber bundle model with mixed uniform
distribution of threshold strengths [16]. They have consid-
ered two uniform distributions separated by a gap. The
approach developed in this letter might be interpreted as
the infinite gap limit of Divakaran’s model.
In the present paper we study the effect of strong

heterogeneities on the process of fracture based on a
fiber bundle model. We assume that the system has two
components, one of which is characterized by a strength
distribution, while the other one is unbreakable. Varying
the fraction of the two components α under global load
sharing conditions, we show analytically that the presence
of unbreakable elements has a substantial effect on the
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fracture process of the system both on the micro- and
macro-scales. Very interestingly, we find a critical fraction
αc where a transition occurs between two qualitatively
different regimes: below the critical point α<αc the
macroscopic constitutive curve has a single maximum
and the burst size distribution is a power law with
the usual mean-field exponent τ = 5/2. However, above
αc the macroscopic response becomes monotonous and
the burst exponent switches to a lower value τ = 9/4
with a cutoff function. Based on the analysis of the
macroscopic response of the system, we show that the
transition is conditioned to disorder distributions where
the constitutive curve has a single maximum and an
inflection point defining a novel universality class of
breakdown phenomena.

Model. – We consider a set of N fibers which are
loaded in parallel. Under an increasing external load σo
the fibers have a linearly elastic response with a Young
modulus E = 1 fixed for all the fibers. In order to capture
the large variation of disordered material properties, we
assume that the bundle is composed of two subsets of
fibers with strongly different breaking characteristics: A
fraction 0� α� 1 of fibers is strong in the sense that they
have an infinite load bearing capacity so that they never
break. However, fibers of the remaining 1−α fraction
are weak and break when the load on them σ exceeds a
threshold value σith, i= 1, . . . , Nw, where Nw = (1−α)N
is the number of weak fibers. The strength disorder of
weak fibers is characterized by the probability density
p(σth) and distribution function P (σth) =

∫ σth
0

p(x)dx of
the failure thresholds. After a weak fiber breaks in the
bundle, its load has to be overtaken by the remaining
intact ones. For simplicity, we assume global load sharing
(GLS) (also called equal load sharing) which means that
all the intact fibers share the same load σ, hence, no stress
concentration occurs around failed regions. Under these
conditions the constitutive equation of the model can be
written as

σo = (1−α) [1−P (σ)]σ+ασ, (1)

where σo is the external load acting on the sample and
σ denotes the load of single fibers which is related to
the strain ε of the system as σ=Eε. The first term of
eq. (1) accounts for the load bearing capacity of the
surviving fraction of weak elements, and the second one
represents the stress carried by the unbreakable subset of
the system. In the following calculations it is instructive
to consider two different strength distributions for the
weak fibers, namely, a uniform distribution between 0 and
1 and a Weibull distribution will be used with the distri-
bution functions P (σ) = σ and P (σ) = 1− exp[−(σ/λ)m],
respectively.
The constitutive behavior of the system is presented

in fig. 1, for the two different disorder distributions. We
recover the usual FBM solutions [2] in the limiting case of
α= 0, when the bundle is only composed of weak fibers.
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Fig. 1: Constitutive behavior of the system for several values of
α using a Weibull distribution with m= 2 and λ= 1 (a), and
uniformly distributed threshold values (b). The two regimes
α<αc and α>αc are indicated by the grey areas, and the
dashed lines with slope α show the asymptotic linear behavior
of σo(σ). The vertical straight lines represent the position of the
inflexion point and the value of the largest breaking threshold
for the Weibull (a) and uniform distributions (b), respectively.

Those solutions usually present a parabolic maximum,
which defines the critical deformation σc =Eεc and
critical strength σco(σc) of the system. For finite values
of α, all the weak fibers break for large enough σ so that
the first term of eq. (1) goes to zero while the unbreakable
fibers overtake the entire external load. Consequently,
the constitutive curves in fig. 1 tend asymptotically to a
straight line with slope αE. It can be seen in fig. 1 that
for low values of α the local maximum of σo(σ) prevails
but its position σc(α) and value σ

c
o(α) are monotonically

increasing with α. It is interesting to note that there
exists a well-defined critical value of the fraction of the
components αc above which α>αc the local maximum
disappears and the constitutive curve becomes a monoton-
ically increasing function dσo/dσ > 0. The position of the
maximum σc is obtained from the condition of extreme
dσo
dσ

∣∣
σc
= 0, which can be cast into the form

1

1−α = P (σc)+σcp(σc). (2)
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The above equation should be solved for σc as a function
of α, then σco can be determined by substituting σc(α)
into eq. (1). Since the derivative of the constitutive curve
σo(σ) has a minimum in the inflexion point σin, the
right-hand side of eq. (2) has a maximum at σc = σin.
It follows that eq. (2) can only be solved for σc(α) until
α� αc, where the critical fraction of strong fibers αc is
defined as the solution of σc(αc) = σin. It is important to
emphasize that the location of the inflexion point σin does
not depend on the value of α since the second derivative
of the constitutive equation σo(σ) reads as

d2σo
d2σ

∣∣∣∣
σc

=−(1−α) [2p(σ)+σp′(σ)] . (3)

For the case of Weibull distributions the general solution
σc(α) cannot be obtained in a closed form. However, one
can still calculate analytically αc and determine σc for
two parameter values α= 0 and α= αc. The calculations
result in σc(α= 0) = λ(1/m)

1/m, and σc(αc) = σin, where
the inflexion point is σin = λ[(1+m)/m]

1/m. The critical
point αc is then obtained by substituting σin into eq. (2)
which yields αc =me

−(1+m)/m/[1+me−(1+m)/m].
Note that the above arguments do not apply to

the uniform distribution, since the constitutive curve
σo = [1− (1−α)σ]σ does not have an inflexion point (see
fig. 1(b)). The position of the maximum of σo(σ) can be
obtained analytically as σc(α) = 1/2(1−α), which holds
for α� αc with the critical value of the control parameter
αc = 1/2. At αc the value of σc coincides with the upper
bound of strength values σmaxth = 1. The parabolic shape of
the constitutive curve prevails even for α>αc but σo(σ)
becomes linear at σ= σmaxth before reaching the maximum,
so that the rest of the parabola cannot be realized.
The presence of the critical point and the qualitatively

different forms of σo(σ) below and above αc have a
substantial effect on the microscopic breaking of the
system. Under stress-controlled loading conditions the
decreasing part of σo(σ) cannot be accessed for α<αc.
Contrary, a horizontal jump occurs giving rise to a large
number of breakings in one step. For uniformly distributed
failure thresholds, this unstable avalanche is the last one
that includes all the remaining weak fibers. In the Weibull
case, however, the threshold values are distributed over
an infinite domain, so that the jump is still followed by
breaking events which disappear only asymptotically. For
the detailed characterization of the microscopic breaking
process, we analyze the size distribution of bursts of fiber
breakings.

Precursory activity. – Under stress-controlled
loading conditions, each fiber breaking is followed by the
redistribution of load over the intact elements. Assuming
global load sharing the load is everywhere the same σ in
the system. When the external load is increased quasi-
statically, i.e. σo is increased to break only a single fiber,
the subsequent load redistribution triggers an entire burst
of breakings. In the simple FBM these local failure events

result in fluctuating burst sizes ∆, with an increasing
average, as macroscopic failure is approached. The size
distribution of the bursts is one of the most important
characteristics of the microscopic fracture process which
can be monitored experimentally by the acoustic-emission
techniques. It has been demonstrated that in FBM under
GLS conditions [4], the burst size distribution can be
obtained analytically in the form of an integral

D(∆)

N
=
∆∆−1

∆!

∫ σm
0

p(σ)(1− aσ)a∆−1σ e−aσ∆dσ, (4)

where aσ = σp(σ)/[1−P (σ)] is the average number of
fibers which break as a consequence of a single fiber failure
at the load σ. It was shown in refs. [4,14,17] that the
distribution D(∆) simplifies to a power law D(∆)∼∆−τ
with the exponent τ = 5/2 for a broad class of disorder
distributions where the constitutive curve of the system
has a single quadratic maximum.
In the following we show analytically that in the

presence of unbreakable fibers, the avalanche statistics
changes and a novel universality class of FBMs emerges.
Slowly increasing the external load to break a single fiber,
its failure stress σ is equally redistributed over the intact
fibers giving rise to the load increment

δσ=
σ

N [1−P (σ)](1−α)+αN . (5)

It can be seen that the strong fibers reduce the load
increment δσ on the weak ones, since the load beared
by the strong fibers does not contribute to breaking. The
average number of fibers aσ which fail as a consequence of
this increment δσ can be cast into the form

aσ = (1−α)Np(σ)δσ= (1−α)σp(σ)
α+(1−α) [1−P (σ)] . (6)

The size distribution of the resulting bursts can be
obtained by substituting eq. (6) into the general expression
eq. (4), where we have to analyze the behavior of the
integral

I(∆)≡
∫ σm
0

p(σ)
1− aσ
aσ

e−∆[aσ−ln aσ ]dσ, (7)

for different values of α. The upper integral limit corre-
sponds to the location of the maximum in the constitu-
tive curve σm. For large ∆ this integral is controlled by
the maximum of the exponent. The extreme condition of
ψ≡ aσ − ln aσ result in ψ′ = a′σ(1− 1

aσ
) = 0, corresponding

to a maximum at aσ = 1. Below the critical point α<αc,
for aσ < 1, we can make the expansions

aσ � 1+ a′σ |σm (σ−σm), (8)

and

ψ� 1+ a′σ
2

2
|σm (σ−σm)2. (9)
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Inserting eqs. (8), (9) into the expression of I(∆) we get

I(∆)� p(σm)a′σe−∆
∫ σm
0

(σ−σm)e−
∆a′2σ
2 (σ−σm)2dσ.

(10)

Substituting I(∆) into the general equation eq. (4) and
taking the large ∆ limit of the prefactor, the asymptotic
behavior of the burst size distribution can be cast into the
form

D(∆)

N
� p(σm)√
2πa′σ

∆−5/2, (11)

which coincides with the known result of refs. [4,14,17]
in the limit α= 0. This derivation implies that the pres-
ence of a finite amount of unbreakable fibers does not
change qualitatively the behavior of the system while
the single quadratic maximum of the constitutive curve
prevails α<αc.
The situation drastically changes when we reach αc,

since at this point the position of the maximum σc(αc) and
of the inflexion point σin of the constitutive curve coincide

with each other so that dσodσ
∣∣
σc
= 0 and d2σo

dσ2

∣∣∣
σc
= 0 hold.

Above αc no maximum of the constitutive curve exists
dσo/dσ > 0. It can easily be shown that at α= αc the
average number of failing fibers aσ, as a consequence of
a single fiber breaking, has the properties aσc = 1 and
a′σ|σc = 0. In order to determine the asymptotic behavior
of I(∆) it is then necessary to carry out the Taylor
expansions of eqs. (8), (9) to the next order. In this case
we obtain for aσ and ψ

aσ � 1+ a′′σ
2
(σ−σc)2, ψ� 1+ 3aσ

′′2

4!
(σ−σc)4.

(12)
Inserting these expressions into eq. (7), the integral can
be cast into the form

I(∆)� p(σc)a
′′
σe
−∆

2

∫ ∞
0

dσ(σ−σc)2e
3a′′2σ∆
4! (σ−σc)4 . (13)

Following the usual procedure, we arrive at

I(∆)� Γ
(
3
4

)
25/237/4a′′1/2σ

e−∆∆−3/4, (14)

which implies that at the critical point αc the avalanche
size distribution changes to

D(∆)

N
� Γ

(
3
4

)
24
√
3πa′′σ31/4

∆−9/4. (15)

Our derivation demonstrates that increasing α the
behavior of the system changes both on the macro- and
the micro-scales. We showed that while the quadratic
maximum of σo(σ) prevails, i.e. below the critical point
αc, the asymptotic behavior of the burst size distribution
D(∆) is controlled by the vicinity of the maximum
resulting in a power law functional form D(∆)∼∆−τ
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Fig. 2: Non-normalized avalanche size distributions for uniform
(a,c) andWeibull distributions (b,d) varying α below and above
αc. The straight lines in (a) and (b) represent the power laws
obtained analytically eqs. (11), (15). Rescaling the two axis
according to the scaling formula eq. (16), a very good quality
data collapse is obtained in (c) and (d).

with a universal exponent τ = 5/2. However, at αc the
constitutive curve becomes monotonically increasing
dσo/dσ > 0 and the avalanche statistics is dominated by
the inflexion point of σo(σ), giving rise to a different value
of the exponent τ = 9/4. Varying the control parameter α,
the exponent τ suddenly switches between the two values
5/2 and 9/4 when passing the critical point αc. Note that
in the derivation the only assumption we made is that the
constitutive curve of the system has a single maximum
and an inflexion point. It follows that the change of
the exponent τ of the avalanche size distribution can
be observed for a large variety of disorder distributions
defining a novel universality class of breakdown phenom-
ena. This universality class is narrower than the one in
which the power law behavior of D(∆) emerges with the
exponent τ = 5/2. For instance, the Weibull distributions
do present the above switching of exponents, however,
the uniform distribution does not.
We have carried out Monte Carlo simulations to validate

the previous theoretical predictions. We have explored the
quasi-static fracture process of our fiber bundle model
using computer simulations of a system composed of
N = 106 fibers and averaging over 103 samples both for
uniform and Weibull distributions for the fiber breaking
thresholds.
Figure 2 displays the burst statistics for a fiber bundle

with uniform and Weibull failure thresholds in figs. 2(a,c)
and figs. 2(b,d), respectively. In both cases, below the
critical fraction of unbreakable fibers, αc, the burst
distributions D(∆) do not change significantly, and even
the cutoffs associated to the lack of numerical statistics
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(d)
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Fig. 3: The average size of the largest burst ∆max as a function
of α for uniform (a,c) and Weibull (b,d) distributions. The
vertical straight lines in the figures indicate the corresponding
critical point αc. (c) and (d) show that approaching αc from
above, ∆max has a power law divergence as a function of
α−αc. The value of the exponent is ν = 1.56± 0.07 for both
cases.

do not change with α. For a uniform distribution of
breakable fibers, the constitutive equation for σ� σc(α)
reduces to the one corresponding to a material composed
only by weak fibers, with threshold values between zero
and the upper bound σmaxth = 1/(1−α). Hence, it follows
that the entire failure process of the bundle, obtained
at different α values, remains the same until there are
enough weak fibers in the system Nw >N/2. Further-
more, for the parameter regime α<αc the avalanche
statistics does not change. We obtain the typical power
law distribution D(∆)∼∆−τ with the exponent τ = 5/2
(figs. 2(a,c)). On the other hand, the parabolic shape of
the constitutive behavior σo(σ) also prevails for α>αc. In
this regime, the system behaves as if the loading process
was stopped before reaching the maximum of σo(σ), due
to the insufficient number of breakable fibers Nw <N/2
(compare to fig. 1(a)). Consequently, the cutoff of the
distribution D(∆) in fig. 2(a) decreases with increasing α.
However, the exponent τ keeps the same value as below
αc, in agreement with our predictions and with ref. [4].

We use the average size of the largest burst ∆max
as the characteristic burst size of the system. It can be
seen in fig. 3(a) that for the uniform distribution below
αc, the value of ∆max is constant, while it decreases
rapidly when α surpasses αc. Figure 3(c) demonstrates
that approaching αc from above the characteristic burst
size shows a power law divergence ∆̄max ∼ (α−αc)−ν .
The value of the exponent ν = 1.56± 0.07 was obtained
numerically.
In figs. 2(b,d), the burst statistics of a fiber bundle with

a Weibull distribution of breaking thresholds is illustrated.
The Weibull parameters were set to m= 2 and λ= 1,

corresponding to a critical point αc � 0.3085. In this case,
below the critical point α<αc the burst size distribution
has a power law behavior D(∆)∼∆−τ , with the exponent
τ = 5/2 (fig. 2(b)). In this regime, a slight increase of the
cutoff burst size appears when increasing α, however, the
power law part of the distribution does not change. When
α surpasses αc, the exponent of the power law regime
of D(∆) suddenly switches to the lower value τ = 9/4.
The latter is in excellent agreement with our analytic
predictions (see fig. 2(b)). Moreover, we again find that
the characteristic burst size ∆max diverges as a power
law as we approach αc from above. The value of the
critical exponent ν is the same as for the uniform case (see
fig. 3(d)). We emphasize that the value of the exponent of
the power law regime of D(∆) remains constant τ = 9/4
when changing α above αc.
Using ∆max as a scaling variable, we introduce the

scaling ansatz

D(∆) = ∆̄−βmaxg(∆/∆
ξ

max) (16)

for the burst size distributions above the critical point
α>αc. Here β and ξ are scaling exponents, which have the
relation β = τξ with τ = 5/2 and τ = 9/4 for the uniform
and Weibull distributions, respectively. Figures 2(c) and
(d) present the rescaled burst size distributions plotting

D(∆)∆
β

max as a function of ∆/∆
ξ

max. The high-quality
data collapse is obtained with the parameters β = 3.25,
ξ = 1.25 and β = 2.52, ξ = 1.12, for the uniform and
Weibull distributions, which are consistent with the two
different values of the τ exponent.

Discussion. – Our numerical and analytical calcula-
tions revealed that the presence of unbreakable elements
gives rise to a substantial change of the fracture process of
disordered materials both on the micro- and macro-scales.
Astonishingly, we found a critical fraction of the breakable
and unbreakable components where the exponent of the
burst size distribution switches from the well-known mean-
field exponent of FBM τ = 5/2 to a significantly lower
value τ = 9/4. The transition is conditioned to disorder
distributions where the macroscopic constitutive response
of the system has a single maximum and an inflexion
point, implying a novel universality class of FBM. Despite
we have considered only unbreakable fibers, our results will
hold for a finite gap of two threshold distributions down to
a certain critical value of the gap size. Below this critical
value our model recovers the former work of ref. [16].
Besides its theoretical importance, the problem has
several implications for experimental studies. New mate-
rials of high mechanical performance are often fabricated
by mixing components with widely different properties.
For instance, fiber-reinforced composites are composed
of strong fibers which are embedded in a carrier matrix.
In this case at the breaking of weak elements, the strong
ones act as the unbreakable component of our model.
Our detailed analytical and numerical study is restricted

to the quasi-static limit of FBMs where the external
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load is incremented in a continuous manner. However,
in laboratory experiments only finite discrete load steps
can be realized. Recently, it has been demonstrated that
for large enough load increments the statistics of bursts
changes, i.e. under GLS conditions the exponent of the
power law distribution of burst sizes takes a higher value
τ = 3.0 [19,20]. When the system is a mixture of weak
and strong fibers the effect of finite load steps depends
on the type of disorder. For uniformly distributed failure
thresholds it is straightforward to show that the burst
exponent changes to τ = 3.0 both below and above the
critical fraction αc. Nevertheless, disorder distributions for
which the constitutive curve has an inflexion point (e.g.,
Weibull distribution) deserve a detailed study which will
be presented elsewhere.
A very interesting application of FBMs is to study the

time-dependent deformation and rupture of disordered
materials under a constant external load (creep rupture).
To understand damage enhanced creep processes the
relaxation dynamics of FBMs has recently been inves-
tigated in details [21–23]. It has been found that below
the critical load σc the system suffers only partial failure
and relaxes to a stable state, while above σc macroscopic
breaking occurs in a finite time. When approaching σc
from either side, the characteristic time scale (relaxation
time and lifetime of the system) has a power law diver-
gence with a universal exponent 1/2 [22,23]. Since the
relaxation dynamics of the system is determined by the
functional form of the constitutive curve in the vicinity of
the critical load, novel behaviour can be expected in the
presence of strong fibers. The relaxation dynamics and
creep rupture open up interesting possibilities for future
applications of our model.
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