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Abstract – The effects of dynamical symmetry on the chaotic pattern synchronization in modular
networks have been studied. It is found that the topological and the coupling symmetries between
modules (subnetworks) can both enhance and speed up the chaotic pattern synchronization
between modules. The calculation of Lyapunov exponent shows that this dynamical symmetry
is a necessary condition for complete chaotic pattern synchronization in both modular networks
composed by identical oscillators and heterogeneous modular networks if the states of nodes are
much different from one another.
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Dynamical synchronization in complex networks has
been an interesting research subject in recent years due to
its relevance to fields such as ecology [1], neuroscience [2],
chemistry [3], laser [4], and plasma [5] etc. For different
networks, the global chaotic synchronization has been
studied in regular [6], random [7], small-world [8], scale-
free [9], and modular [10] networks. Some conclusions
on the relations between the network structure and
the synchronization are obtained, e.g., random and
semi-random (scale free, small-world, etc) networks are
more synchronizable than regular networks [6,8]; long-
range coupling, age ordering, and weighted distribution of
connection strength can enhance the synchronization [7,9].
Another interesting phenomenon is the dynamical

pattern (spatiotemporal dynamics) formation in complex
networks which usually occurs in heterogeneous networks
and in the transition to global synchronization in complex
networks [4,5,11] composed by identical oscillators. Many
complex networks, e.g., brain and biological networks
usually exhibit random (semi-random) topologies with
high node connections locally and show some regular
topologies globally. This local and global topological
structure is just the feature of modular networks [12].
Dynamical pattern formation in a modular network is
obviously related to the network functions. Although
the pattern formations have been studied in modular
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networks [11,12] and the chaotic pattern synchronization
(CPS) have been found experimentally in extended
systems [4,5], the synchronization between chaotic
patterns in networks, however, has not been concerned.
In this letter, we study the CPS between two unidi-

rectionally interlinked modules (a drive module d and a
response module r) with each module intralinked regularly
or randomly (see fig. 1). Such a modular network may be
a sub-modular network of a hierarchical network [11,12] or
a larger complex network. In our present study, the CPS
means that the two modules have the same (complete)
or similar (phase) spatiotemporal chaotic dynamics. The
dynamics of the drive module d is described by

ẋdi =F
d
i (x

d
i )+
∑
j

gddij H
d
ij(x

d
j ,x

d
i ), (1)

and the dynamics of the response module r is determined
by

ẋri =F
r
i (x

r
i )+
∑
j

grrijH
r
ij(x

r
j ,x

r
i )+
∑
j

grdij H
rd
ij (x

d
j ,x

r
i ),

(2)

where ẋi =Fi(xi), xi ∈Rmi , is the dynamical equation of
the isolated node i, and it may be different for different
node i in d and r. While Hij(xj ,xi) :R

mj ×Rmi→Rmi
and gij are the coupling function and the coupling strength
from node j to node i, respectively. The size of the modular
networks N =Nd+Nr = 2Nd = 2Nr. To obtain the CPS
between the two modules, we will show that the topological
symmetry : 1) Fdi =F

r
i =Fi, 2) H

dd
ij =H

rr
ij =H

rd
ij =Hij ,
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Fig. 1: (a) Schematic illustration of the dynamical symmetry
gddij = g

rd
ij + g

rr
ij between modules d and r. Module d has the

same dynamical topology as module r for grdij = 0. (b) A
modular network composed by two interlinked 2D regular
lattices with open boundary conditions. Here gddij = g

dd
ji = α,

grdij = β, g
rr
ij = α−β′, and Nd =Nr = 100. The black nodes and

the gray nodes are in different positions. (c) A random modular
network, module d is first generated with probability P1 and
gddij = g

dd
ji = α, module r is a “copy” of d, thus modules d and r

have the same dynamical topology. Then d and r are randomly
interlinked with probability P2, g

rd
ij = β, and g

rr
ij = α−β′.

and the coupling symmetry : 3) gddij = g
rd
ij + g

rr
ij (see

fig. 1a), ∀i should exist, that is, modules d and r have the
same dynamical topology for grdij = 0. If module d (r) is
heterogeneous, i.e., modular d (r) is composed by non-
identical oscillators, then only the CPS between d and r
is possible. If further 4) Fi =Fj ,∀i, j (i.e., modular d (r)
is composed by identical oscillators), then either the CPS
or the global chaotic synchronization (all N=Nd+Nr

nodes of a modular network are in the same complete
synchronous state) can occur for certain dynamical para-
meters. In this letter we call the topological and coupling
symmetries the dynamical symmetry and study the
dynamics of the modular networks composed by identical
oscillators to reveal broad synchronized phenomena.
To study the effects of the dynamical symmetry on the

stability of the CPS between d and r, considering coupling
asymmetry, we give the difference equation:

∆ẋi = ẋ
d
i − ẋri =
DiFi(x

d
i )∆xi+

∑
j

gddij DiHij(x
d
j ,x

d
i )∆xi

+
∑
j

grrij DjHij(x
d
j ,x

r
i )∆xj +

∑
j

δijHij(x
d
j ,x

r
i ),

(3)

here gddij − grdij − grrij = δij with δij being the parameter
reflecting the coupling asymmetry. While DiHij(x

d
j ,x

d
i )×

∆xi = Hij(x
d
j ,x

d
i )−Hij(xdj ,xri ), and DiFi(x

d
i )∆xi =

Fi(x
d
i )−Fi(xri ). The

∑Nd
i=1mi dimension vector

∆x(t) = (∆x1(t),∆x2(t), · · ·,∆xNd(t))T = 0 gives the
complete CPS. From eqs. (1)–(3) we can calculate
the maximal transversal Lyapunov exponent (MTLE)

λ= lim
t→∞

1
t
ln |∆x(t)∆x(0) |. The complete CPS is stable for

λ< 0, and unstable for λ> 0. It should be noted from
the nonhomogeneous differential equation (eq. (3)) that
�x= 0 is the possible solution only for δij = 0,∀i, j due
to Hij(x

d
j ,x

r
i ) �= 0 for general coupled heterogeneous

modular networks, i.e., complete CPS can only occur
for symmetrical coupling gddij − grdij = grrij . This result
is hold for any complex modular network and will be
shown numerically for different modular networks. Since
δx(t) =max|∆x(t)/∆x(0)| ∼ exp(λt) for t→∞, the
MTLE λ also defines a synchronization time τs = |λ|−1 or
the speed of synchronization τ−1s = |λ|. It is obvious that
the complete CPS is faster for more negative MTLE λ.
Our following simulation shows that λ strongly depends
on both the coupling strength between nodes and the
dynamical symmetry of a modular network.
To illustrate the effects of the dynamical symme-

try on the CPS and the synchronization speed, we
first consider a modular network composed by two
interlinked two-dimensional regular lattices with open
boundary conditions and Nd =Nr = 100 (see fig. 1b).
The nodes are chosen as identical Lorenz oscilla-
tors ẋ=F(x) = [σ(y−x), Rx− y−xz, xy− bz]T with
(σ,R, b) = (10, 28, 8/3), and the coupling function as

H(xj ,xi) =E(xj −xi) with E=


0 0 0
R 0 0
0 0 0


. For symmet-

rical coupling, we set gddij = g
dd
ji = α, while g

rr
ij = α−β

for grdij �=i = β, and g
rr
ij = α for g

rd
ii = 0 and g

rd
ij = 0 (in our

calculation the number of grdij �=i = β is 25, see fig. 1b). The
initial conditions of all nodes are chosen from a normal
random distribution in the region [−10, 10]. Figure 2a
shows the critical lines of the MTLE λ(α, β)� 0 (black
solid line 1) in (α, β) parameter space. Different regions
correspond to different dynamical phenomena, region B
(between the black solid line 1 and the vertical dotted
line α≈ 2.6) corresponds to the complete CPS between
modules d and r (see fig. 2b), and region C the global
chaotic synchronization, while region D corresponds
to the global chaotic synchronization of module d,
and region A the unsynchronization of the modular
network. Figure 2b shows xdi (t) and x

r
i (t),∀i, for different

(α, β, t) = (0.3, 0.3, t), (1.0,1.0,t), (2.0,2.0,t). From these
three pairs of snapshot of the chaotic pattern (from top
to bottom), we see that the chaotic patterns of d and
r are identical at the same time, that is, the complete
CPS occurs. If grdij �=i = 0, and g

rd
ii = β,∀i (black nodes in d

connect black nodes in r, see fig. 1b), then the complete
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Fig. 2: (a) Stability regions of synchronization of a regu-
lar modular network (fig. 1b) obtained by calculating the
MTLE λ(α, β) for for different α, β, and β′. The
critical lines λ(α, β)≈ 0 for β′ = β (line 1) and β′ =
β+0.6 (line 2) divide the parameter space (α, β) into
stable and unstable regions. The averaged synchroniza-
tion error e(α)> 10−2 (line 3) is much larger than 10−15

in the complete CPS region B (between line 1 and
the vertical dotted line α≈ 2.6) and approaches to zero
(<10−15) in the global chaotic synchronization region C. A
is the unsynchronization region (xdi �= xdj , xdi �= xri ), and D the
global chaotic synchronization of module d (xdi = x

d
j , x

d
i �=

xri ), here (σ,R, b) = (10, 28, 8/3). (b) The chaotic patterns
in modules d and r for (from top to bottom) (α, β, β′) =
(0.3, 0.3, 0.3), (1.0, 1.0, 1.0), (2.0, 2.0, 2.0), and at different
time moments. The complete CPS is clearly seen.

CPS can occur for 0.2� αc1 � α<αc2 � 2.6 (in our case)
and β > βc(α) (the left region enclosed by the gray solid
line 3 in fig. 2a). αc1 can approach zero if all the links
grdii �= 0 and grdij �=i = 0. The stability regions for both the
complete CPS and the global chaotic synchronization
decrease with decreasing the strength grdij and the number

of interlinks grdij .
For asymmetrical coupling: grrij + δij = α−β′ (β′ �= β),

the complete CPS disappears and the phase CPS (�x �= 0
but the phase difference between node i in d and node
i in r, ∀i, is zero) occurs (the region B enclosed by the
black dotted line 2 and the vertical dotted line α≈ 2.6
in fig. 2a). The stability regions for both the phase
CPS and the global chaotic synchronization increase
with decreasing the difference |β−β′|, the maximum
regions are obtained at β′ = β (fig. 2a), and the phase
CPS becomes the complete CPS. Thus the dynamical
symmetry can greatly enhance both the CPS and the
global chaotic synchronization.

In order to realize the CPS in a modular network,
besides the similar topologies of the modules, the obvious
requirements for the dynamical structure of a modular
network should be: 1) all the nodes (named drive nodes)
in d with zero in-degree should be linked to the nodes in r,
2) any node j in d with grdij = 0 should be driven directly
or indirectly by at least one drive node which is linked
to r, that is there is (are) flow (flows) from this drive
node (nodes) to node j, 3) there is (are) flow (flows) from
d to any node (nodes) in r. With these considerations
we study the synchronization speed by calculating the

MTLE λ(α, β, β′) for different α= gddij = gddji , β = grdij , and
β′ (α−β′ = grrij + δij). The numerical results exhibited in
figs. 3a–d show that the stability region enclosed by solid
lines for the phase CPS (β′ �= β) decreases with decreasing
α from α� 2.6 since the chaotic states among nodes
become more and more different in module d. For α� 2.6,
the complete CPS can occur only when β′ = β corre-
sponding to the dynamical symmetry: gddij = g

rd
ij + g

rr
ij .

The global chaotic synchronization occurs for α� 2.6
and the stability region of it increases with increasing
α. The MTLE λ becomes more and more negative as
β′ approaches β for any value of α. The minimum λ is
obtained when β′ = β (see figs. 3a–d). From the behaviors
of λ(α, β, β′) in the (α, β, β′)-space, we see that the
synchronization speed τ−1s = |λ(α, β, β′)| increases to its
maximum value slowly as β′ approaches β for larger α,
and abruptly for small α (see fig. 3l). The difference �xi =
xdi (t)−xri (t) for different α, β and β′ shown in figs. 3e–k
clearly displays the speed-up phenomenon of the synchro-
nization. From �xi we can also obtain the synchronization
speed τ−1s ≈∆t−1 (∆t here is the transient time) for
different α, β, and β′, which have similar behaviors as that
of λ(α, β, β′) (see fig. 3l). The spatiotemporal behaviors of
the chaotic pattern suggest that the averaged synchroniza-

tion error e(α) = 2
Nd(Nd−1)

∑
i,j |xdi −xdj | should be much
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Fig. 3: (a)–(c) The MTLE λ(α, β, β′) of a regular modular
network (fig. 1b) for α= 1.3 (a), 2.5 (b), 2.8 (c), and different
β and β′. The stable regions enclosed by solid lines increase
with increasing α as shown in (d) and the minimal λ’s are
obtained for β = β′. The stable regions for β′ �= β and α� 2.6
are the phase CPS regions. (e)–(k) ∆x(t) = xdi (t)−xri (t) for
α= 2.8, β = 3.0, and different β′ = 0.5 (e), 1.5 (f), 2.7 (g),
3.0 (h), 3.4 (i), 4.5 (j), 5.5 (k). (l) ∆t(β′) (black lines: 1,2,3)
and the MTLE λ(β′) (gray lines: 1′, 2′, 3′) for (α, β) = (1.3, 1.0)
(lines: 1, 1′), (2.5,3.0) (lines: 2, 2′), and (2.8,3.0) (lines: 3, 3′).
β′ = β(= 1.0, 3.0) gives the minimum λ and the maximum
speed of synchronization for different α.

larger than 10−15 (in our case). The numerical results
(gray solid line 3 in fig. 2a) show that e(α� 2.6)> 10−2
for CPS and e(α� 2.6)< 10−15 for global chaotic
synchronization. β′ must be equal to β for the occurrence
of complete CPS if e(α� 2.6)> 10−2 (in our case), that
is, the dynamical symmetry is the necessary condition for
complete CPS if the chaotic states of the nodes in module
d are much different from one another (e(α)> 10−2).
However, the global chaotic synchronization can take
place for β′ �= β with e(α� 2.6)< 10−15.
It should be noted that the region B still exists, but the

region C disappears for lower dynamical symmetry: Fdi �=
Fdj , F

r
i �=Frj , but Fdi =Fri . We have numerically calculated
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Fig. 4: The MTLE λ of the random modular networks (fig. 1c)
(averaged over 10 realizations). (a) The MTLE λ(P1, P2) for
different α, β, and β′ (for details, see the text). (b) The MTLE
λ for P1 = 0.08, P2 = 0.5, α= 0.5, and different β and β

′, which
shows that the complete CPS occurs for β′ = β, and the phase
CPS occurs for β′ �= β (region enclosed by the black solid line).

this result in a heterogeneous modular network composed
by non-identical Lorenz oscillators.
As another example to further show the generality of

the relations between the dynamical symmetry and the
synchronization, we consider a modular network composed
of two randomly intralinked modules with the intralinked
probability P2 which are randomly interlinked with the
interlinked probability P1 (see fig. 1c). In generating
the random modular networks the relations gddij − grdij −
grrij = δij is kept, and the identical Lorenz oscillators with

(σ,R, b) = (10, 28, 8/3) and Nd =Nr = 50 are used. The
MTLE λ(P1, P2)’s for different P1, P2, α, β, and β

′ are
shown in fig. 4, which are obtained from the average over
10 realizations of the modular networks. For the same
α and β, the critical lines λ(P1, P2)� 0 for β′ = 0 (gray
lines) and β′ = β (black lines) are illustrated in fig. 4a.
For the same α, the right region of the gray line is the
stability region for global chaotic synchronization, and the
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left region of the black line is for the unsynchronization,
while the region between the black and the gray lines is for
the complete CPS. The complete CPS region disappears
and a small region for the phase CPS occurs for β′ �= β
as shown in fig. 4b. Because more links between modules
d and r are required for CPS as α is increased, so
that the stability region for complete CPS in (P1, P2)
parameter space increases with increasing α. We have
studied the bidirectionally coupled modular networks with
linear and ring structures and obtained the similar results
as discussed above.
In summary, we have shown that the dynamical symme-

try between modules are the requirements for complete
CPS in modular networks. Since nodes i∈ d and i∈ r,∀i,
are identical, the condition for complete CPS can be
equally stated as: the same and identical inputs of nodes
i in d and i in r are required for complete CPS, that is,∑
j g
dd
ij H(x

d
j ,x

d
i ) =

∑
j g
rd
ij H(x

d
j ,x

r
i )+
∑
j g
rr
ijH(x

r
j ,x

r
i ).

In the complete chaotic pattern synchronous state:
xdi (t) = x

r
i (t) and xdj (t) = x

r
j(t),∀i, which yield

H(xdj ,x
d
i ) =H(x

d
j ,x

r
i ) =H(x

r
j ,x

r
i ) and g

dd
ij = g

rd
ij + g

rr
ij .

This micro-condition is crucial for complete CPS with
high speed in modular complex networks. The dynamical
symmetry is closely related to the groupoid, which was
used to discuss the network dynamics [13]. It should be
stressed that the dynamical symmetry is only a necessary
condition for synchrony, which is not a sufficient condi-
tion, because the network synchronization is strongly
dependent on the coupling schemes, coupling strength and
the network size. For example, the synchrony cannot exist
in larger enough square lattices with nearest-neighbor
coupling between Lorenz oscillators even though the
networks have groupoid structure. Our results may
have potential applications in complex networks and
communication technologies, where the CPS and high-
speed information flow are important, for example, we
can use complete CPS to decode information in chaos
communication where complex modular networks are
used to generate hyperchaos to mask information [14].
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