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Abstract – Based only on the parallel-transport condition, we present a general method to
compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed
density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting
features of the non-Abelian geometric phase obtained by our method stand out: i) it is a
generalization of Wilczek and Zee’s non-Abelian holonomy, in that it describes nonadiabatic
evolution where the basis states are parallelly transported between distinct degenerate subspaces,
and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of
the basis states, even in the nondegenerate case. We apply our formalism to a two-level system
evolving nonadiabatically under spontaneous decay to emphasize the non-Abelian nature of the
geometric phase induced by the reservoir. We also show, through the generalized invariant theory,
that our general approach encompasses previous results in the literature.

Copyright c© EPLA, 2008

Introduction. The concept of geometric phase (GP) was
transposed to the domain of quantum systems undergoing
cyclic adiabatic evolution by Berry [1], after having
been introduced by Pancharatnam in connection with
interference of light waves with distinct polarizations [2].
After Berry’s discovery, Aharonov and Anandan [3]
removed the need for adiabatic evolution and Samuel and
Bhandari [4] extended the concept of GP to noncyclic
and nonunitary evolutions, introducing the notion of
geodesic closure in the projective Hilbert space. In recent
years, the possibility of achieving fault-tolerant quantum
computation [5–7] invoked the controversial subject of
GPs for open quantum systems, where the dynamic is
generally nonunitary. In this case the GPs have been
defined by different methods: using phenomenological
approaches [8], stochastic fields [9], the usual master equa-
tion [10] and quantum jumps [11] techniques, apart from
state purification [12], mean values of distributions [13],
interferometric [14], and superoperator methods [15–17].

(a)E-mail: duzzioni@ufabc.edu.br
(b)E-mail: serra@ufabc.edu.br
(c)E-mail: miled@ifsc.usp.br

Parallel to these advances in the understanding of GPs,
the dynamical invariants (DIs) proposed by Lewis and
Riesenfeld [18] to handle time-dependent Hamiltonians,
have been applied to a number of problems, including
recent advances in cavity quantum electrodynamics [19]
and Bose-Einstein condensates [20]. Based on the DIs,
Morales [21] and Mizrahi [22] introduced, independently,
a convenient way to compute the evolution of the GPs,
which was used to suggest an interferometric experiment
to measure GPs induced by a Stark shift in cavity quantum
electrodynamics [23].

In this letter, we rely only on the parallel-transport
condition to obtain a general formal expression to compute
the GPs acquired by the basis states of a density operator
under unitary or nonunitary, adiabatic or nonadiabatic,
and cyclic or noncyclic evolutions. The DIs applied to
the density matrix [24] are required to account for the
time-evolution of the GPs in a general scenario of open
quantum systems. Apart from showing that our method
reproduces previous results in the literature, we use it to
compute the GP acquired by a two-level system under
spontaneous decay. We show unambiguously that this GP
turns out to be non-Abelian even in nondegenerate system.
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Thus, it is clear from this general approach that the non-
Abelian character of the GP is wholly associated with the
transitional dynamics of the basis states. Moreover, our
treatment generalizes Wilczek and Zee’s [25] non-Abelian
holonomy, in that it describes nonadiabatic evolutions in
which the basis states are parallelly transported between
distinct degenerate subspaces.

Parallel-transport condition. To compute the GPs
acquired by the time-dependent states {|λ, a; t〉} of
an orthonormal basis, where λ is g-fold degenerate
(a= 1, 2, . . . , g), we first introduce the condition
for parallel transport of a state vector, namely
that �〈λ′, a′; t|dt|λ, a; t〉� = 0 [26]. The evolution operator
responsible for the parallel transport during the time inter-
val t, |λ, a; t〉� = V�(t)|λ, a; 0〉, may be written as V�(t) =∑
λ,λ′
∑
a,a′ (V�)

aa′
λλ′ (t) |λ, a; t〉 〈λ′, a′; 0|. Substituting V�(t)

in the parallel-transport condition, we find the equation

for its coefficients in the matrix form
·
V �(t) = iA(t)V�(t),

whose solution is given by

V�(t) = T exp

(
i

∫ t
0

dτA(τ)

)
, (1)

where V�(t) = 1, the elements of the non-Abelian connec-

tion A(τ) are Aa,a
′

λ,λ′(τ) = i〈λ, a; τ |dτ |λ′, a′; τ〉, and T is the
time-ordering operator. The unitary matrix V�(t) (A(τ)
being Hermitian) accounts for a cyclic and non-Abelian
GP. As we are also concerned with noncyclic evolutions,
we must account for the relative phase acquired by the
parallelly transported state |λ, a; t〉� with respect to its
starting point |λ, a; 0〉, given by arg{〈λ, a; 0|λ, a; t〉�}=
arg{〈λ, a; 0|W (t, 0)V�(t)|λ, a; 0〉}, with the elements of the
overlap matrix W reading W a,a

′
λ,λ′ (t, 0) = 〈λ, a; 0|λ′, a′; t〉.

We note that, to transport a subspace without rotat-
ing it locally, it must remain parallel to itself during

the time interval from t to t+ δt, i.e., W a,a
′

λ,λ′ (t+ δt, t) =
〈λ, a; t|λ′, a′; t+ δt〉 � δλ,λ′δa,a′ . Consequently, a necessary
and sufficient condition stipulates that Aa,a

′
λ,λ′(t) = 0, and

hence A(t) = 0.
As observed in ref. [27], in the general case, where

the overlap matrix W (t, 0) is restricted to an incomplete
subspace

(∑
λ,a |λ, a; t〉〈λ, a; t| �= 1

)
, it must be decom-

posed in the polar form W =RU , R being a positive-
definite (Hermitian) matrix (detR> 0) and U a unitary
matrix (detU = eiϕ), such that eiϕ =detW/detR. In the
case where R is a positive-semidefinite matrix (detR= 0),
the Moore-Penrose pseudoinverse must be used to eval-
uate the matrix U . Then, the non-Abelian, nonadiabatic
and noncyclic GP acquired by the basis states {|λ, a; t〉}
turns out to be

O(t, 0) =U(t, 0)V�(t), (2)

where U is the unitary part of W . Although eq. (2) has
already been published by Mostafazadeh [28] and Kult
et al. [27], in both cases the analyzed non-Abelian geo-
metric phases arise from the usual degeneracy, i.e., from

transitions inside degenerate subspaces. In a more general
scenario, we have extended the analyses in refs. [27,28]
to cases of transitional dynamics which connect different
degenerate and/or nondegenerate subspaces. As discussed
below, we found that transitional dynamics, even between
nondegenerate states, is the source of a non-Abelian
geometric phase. Moreover, when considering the case
of transitional dynamics connecting different degenerate
subspaces, our analysis reveals a generalization of Wilczek
and Zee’s non-Abelian holonomy, since it describes nona-
diabatic evolutions where the basis states are parallelly
transported from one degenerate subspace to another.
The definition of parallel transport used here appear
similar to that used in ref. [29], however, our geometric
quantity (2) is different from that one defined in [29]. It
is important to note that the treatment presented here is
general and includes several kinds of system dynamics.
The general expression for O(t, 0) can be simplified

in three particular cases: transitional (t) dynamics in
a degenerate (d) subspace (Ot,d(t, 0) = [U(t, 0)V�(t)]t,d)
and transitional (Ot,nd(t, 0) = [U(t, 0)V�(t)]t,nd) and non-
transitional (nt) (Ont,nd(t, 0) = [U(t, 0)V�(t)]nt,nd) dynam-
ics in a nondegenerate (nd) subspace. The three different
cases mentioned above, covering all possible evolutions of
the basis states, will be explored below in the context of
the DIs for a general Lindblad evolution.

Gauge-invariance of the GP. Under the gauge transfor-
mation |λ, a; t〉′ =∑ν,bM b,aν,λ(t) |ν, b; t〉, where M is a uni-
tary matrix, the operator V�(t) becomes V

′
�
(t) =M†(t)×

V�(t)M(0), with A
′(t) =M†(t)A(t)M(t)+ iM†(t)

·
M(t).

In its turn, U(t, 0) becomes U ′(t, 0) =M†(0)U(t, 0)M(t).
From these transformed expressions, it follows that
O′(t, 0) =M†(0)O(t, 0)M(0), making the trace and the
eigenvalues of O′(t, 0) observable gauge invariants.
Summarizing our method, we first choose the time-

dependent basis to expand the state of the system ρ(t).
Next, we analyze the evolution of the basis states to
verify if there are transitions or not between them. With
this information we build, through eq. (2), the oper-
ators Ot,d(t, 0) = [U(t, 0)V�(t)]t,d, or Ot,nd(t, 0) = [U(t, 0)
×V�(t)]t,nd, or Ont,nd(t, 0) = [U(t, 0)V�(t)]nt,nd, given the
geometric phases acquired by the basis states under a
general evolution.

GP and the DIs. To illustrate the appearance of the GPs
for the different types of evolution discussed above, it is
convenient to assume the basis states {|λ, a; t〉} to be the
eigenstates of a Hermitian DI, I(t)|λ, a; t〉= λ(t)|λ, a; t〉,
since the invariant method is applicable for adiabatic and
nonadiabatic processes under unitary and nonunitary
evolutions. Moreover, the information about open quan-
tum dynamics is naturally carried through the eigenstates
of the invariant operators. In fact, the DIs [18] associate
with any density operator ρ(t) the time-conserved quan-
tity I(t), called invariant, which satisfies the condition
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d〈I(t)〉/d t≡ 0 [24]. From the Lindblad form for the
density operator of an open quantum system described
by the Hamiltonian H0(t), given by ∂tρ(t) =−i[H0(t),
ρ(t)]+

∑
i,j γij(t){[Γi, ρ(t)Γ†j ] + [Γiρ(t),Γ†j ]}, the evolu-

tion of the invariant operator following from
〈I(t)〉=Tr [I(t)ρ(t)] becomes

∂tI(t) = −i [H0(t), I(t)] +
∑

i,j
γij(t)

{
Γ†j [Γi, I(t)]

+
[
I(t),Γ†j

]
Γi

}
, (3)

where Γi are the Lindblad operators coming from the
action of an environment and γij(t) are the coupling
strengths. We observe that the Lindblad equation
presented above applies for the case where the time
scale related to the rate of change of the time-dependent
Hamiltonian H0(t) is much slower than the time scales
characterizing the reservoir [30].

Formal solution of the master equation and its connec-
tion with GPs. Expanding ρ(t) in the eigenstate basis of
the invariant, we obtain through the master equation in
the Lindblad form, the coupled differential equations

·
c
b,b′

µ,µ′ = i
∑
λ,a

(
Hb,aµ,λ+A

b,a
µ,λ+ iD

b,a
µ,λ

)
ca,b

′
λ,µ′

−i
∑
λ,a

cb,aµ,λ

(
Ha,b

′
λ,µ′ +A

a,b′
λ,µ′ − iDa,b

′
λ,µ′

)

+2
∑
i,j

γij
∑

λ,λ′,a,a′
Λb,aµ,λ;ic

a,a′
λ,λ′

(
Λb

′,a′
µ′,λ′;j

)∗
, (4)

where we have defined the time-dependent matrix
elements Hb,aµ,λ=−〈µ, b; t|H0|λ, a; t〉, Ab,aµ,λ= 〈µ, b; t|idt|λ, a;
t〉, Db,aµ,λ =

∑
i,jγij 〈µ, b; t|Γ†jΓi |λ, a; t〉, and Λb,aµ,λ;i =

〈µ, b; t|Γi|λ, a; t〉. It can be verified that the formal
integration of eq. (4) leads to

c(t) = T exp

{
i

∫ t
0

dτ [H +A+ iD] (·)

+2
∑

i,j

∫ t
0

dτγijΛi (·) Λ†j − i (·)
∫ t
0

dτ [H+A−iD]
}
c(0),

(5)

with (·) indicating the side where the matrices H +A±
iD, Λi and Λ

†
j , are supposed to act on c(0), in the time-

ordered expansion of the r.h.s. of (5). Differently from
the original procedure by Berry [1] (within the context
of an adiabatic and cyclic evolution of a pure state), it is
no longer clear, as first noted in ref. [26], how to extract
the GP from the dynamics of the probability amplitudes
(eq. (5)), describing the nonadiabatic evolution of an open
system, since in general A does not commute with H, D,
and Λi. Some exceptions correspond to the specific cases
of open quantum systems discussed in refs. [15,17] and
filtering evolutions [31]. That is why we have presented a
formal definition of the GP in eq. (2), instead of trying to

obtain it, as usual [1,25,28,32], from the dynamics of the
probability amplitudes. For some particular situations of
dissipative-free dynamics, a connection can be established
between the GPs emerging from our definition and the
dynamics of the probability amplitudes coefficients, as
shown below.

Dissipative-free dynamics (degenerate case). For
dissipative-free dynamics (γij(t) = 0 in eq. (3)) the
solution (5), inside the degenerate subspaces µ and µ′,
reduces to

cµ,µ′(t) =
(
T ei

∫
t
0
dτ(Hµ,µ+Aµ,µ)

)
cµ,µ′(0)

×T e−i
∫
t
0
dτ(Hµ′,µ′+Aµ′,µ′ ), (6)

where cµ,µ′ , Hµ,µ, and Aµ,µ represent matrices composed

of the elements cb,aµ,µ′ , H
b,a
µ,µ, and A

b,a
µ,µ. In ref. [32],

the assumption that [Hµ,µ, Aµ,µ] = 0 even for a non-
adiabatic evolution, resulted in the expressions
T exp[i

∫ t
0
dτHµ,µ(τ)] for dynamic and T exp[i

∫ t
0
dτAµ,µ(τ)]

for cyclic geometric phases. However, as in general
[Hµ,µ, Aµ,µ] �= 0 for transitional and nonadiabatic
dynamics in a degenerate subspace µ, we must
return to the formal expression (2) with V t,d

�
(t) =∑

µ

∑
a,a′ (V�)

aa′
µµ (t) |µ, a; t〉 〈µ, a′; 0| to obtain the GPs

for cyclic (U = 1) and noncyclic (U �= 1) evolutions. For
the cyclic case, eq. (2) with V t,d

�
(t) leads exactly to the

expression T exp[i
∫ t
0
dτAµ,µ(τ)] [32] for the GP, whereas

for the noncyclic case the matrix U must be taken into
account (instead of matrix W as in ref. [28]), with the
elements of the non-Abelian connection being given by
Aa,a

′
µ,µ (τ) = i〈µ, a; τ |dτ |µ, a′; τ〉.
For transitional and adiabatic dynamics in a degenerate

subspace, the adiabatic evolution V t,d
�
(t) is built up from

the condition ∂tI � 0 [22], which implies that H0 and I
assume the same basis {|µ, a; t〉}. In this case, the non-
Abelian dynamic phase reduces to the Abelian one, since
Hb,aµ,µ =Eµδab, where Eµ is the eigenenergy associated
with the state |µ, a; t〉 and, consequently, [Hµ,µ, Aµ,µ] = 0.
The cyclic GP thus remains the non-Abelian holonomy
T exp[i

∫ t
0
dτA(τ)] computed in the Hamiltonian eigen-

states, obtained by Wilczek and Zee [25]. For a noncyclic
evolution, the nonidentity matrix U is responsible for
yielding the result in ref. [27].

Dissipative-free dynamics (nondegenerate case).
For the nondegenerate case, we easily verify that
the solution of (4), corresponding to a particu-
lar case of eq. (6), is given by cµ,µ′(t) = cµ,µ′(0)×
exp{i∫ t

0
dτ [∆Hµ,µ′(τ)+∆Aµ,µ′(τ)]}, with ∆Hµ,µ′ =Hµ,µ

−Hµ′,µ′ , Hµ,µ =−〈µ; t|H0|µ; t〉, ∆Aµ,µ′ =Aµ,µ−Aµ′,µ′ ,
and Aµ,µ = 〈µ; t|idt|µ; t〉, so that the dynamic
and cyclic GPs reduce to the Abelian expressions

exp[i
∫ t
0
dτHµ,µ(τ)] and exp[i

∫ t
0
dτAµ,µ(τ)]. Note that

the dynamic and geometric phases associated with the
element ρµ,µ′ is simply the difference between the phases
acquired by the states |µ; t〉 and |µ′; t〉, even for the
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nonadiabatic case, as can be verified from the DIs [18].
This striking feature of the DIs enable nonadiabatic
evolutions with non-transitional eigenstates in the
nondegenerate case. In this connection, the operators
Unt,nd(t, 0) and V nt,nd

�
(t) =

∑
λ (V�)λλ (t) |λ; t〉 〈λ; 0| in

eq. (2) describe the GP for noncyclic evolutions whose

expression is 〈λ; 0 |λ; t〉 exp(− ∫ t
0
dτ 〈λ; τ | dτ |λ; τ〉) [28].

For cyclic evolutions this GP reduces to that obtained in
refs. [21,22]. Evidently, for the adiabatic case (∂tI � 0)
the above expression for the noncyclic GP gives the result
in ref. [33], while in the cyclic case it reproduces the
original Berry phase [1].

Application —an unstable two-level system. A
particular form of the operator V�(t), given by

[V�(t)]
t,nd
=
∑
λ,λ′ (V�)λλ′ (t) |λ; t〉 〈λ′; 0|, occurs when

we have a nonadiabatic evolution with a transition
between non-degenerate states of the basis {|λ; t〉}. This
is the case in a quantum system undergoing a unitary
evolution, as in ref. [26], or a nonunitary evolution
where, as shown below, the noise injection gives rise to a
non-Abelian GP.
Employing the above method to analyze the role of

dissipation in the evolution of the GP, we consider a non-
degenerate two-level system, with transition frequency ω0
between the ground (g) and excited (e) states, under
spontaneous decay at 0K. The dynamics of this system
is described by the solution to the master equation for
ρ(t) with H0 = ω0σz/2, γ11 = γ/2, and Γ1 = σ−. For the
invariant operator, we assume

I(t) =
∑

α,β=g,e

χαβ(t)σαβ , (7)

where σαβ = |α〉〈β| and the coefficients χαβ(t), which are
solutions of eq. (3), satisfy the relations

χgg(t) =−r0 cos θ0, (8a)

χee(t) =
(
2 eγt−1) r0 cos θ0, (8b)

χeg(t) = r0 sin θ0 e
γt/2−i(ω0t+φ0), (8c)

χge(t) = r0 sin θ0 e
γt/2+i(ω0t+φ0), (8d)

with θ0 (φ0) being the polar (azimuthal) angle of the
initial pure (r0 = 1) or mixed (r0 < 1) state ρ(0) in
the Bloch sphere. The eigenvalues and eigenvectors of
the invariant (7) are given by λ±(t)=−r0[(1− eγt) cos θ0∓
eγt/2

√
1− (1− eγt) cos2 θ0], |±; t〉=±N(t){f(t)| g

e
〉±

r0 sin θ0 e
∓i(ω0t+φ0) | e

g
〉}, with f(t) =−r0[eγt/2 cos θ0−√

1− (1− eγt) cos2 θ0] and N2(t) = (f2(t)+ r20 sin2θ0)−1.
In order to find the coefficients (V�)λλ′(t) of [V�(t)]

t,nd we

first solve the equation [
·
V �(t)]

t,nd = iA(t) [V�(t)]
t,nd
, where

the elements of the non-Abelian connection are given by
Akl = i〈k; t|dt|l; t〉, with k, l=+,−. To this end, we move
to the rotating frame R= exp

[
η
(
e−iζ σ−− eiζ σ+

)
/2
]
, as

in ref. [20], obtaining the coupled differential equations

η̇= 2N2r0 sin θ0[ω0f sinΘ+ ḟ cosΘ], (9a)

ζ̇ = 2N2r0 sin θ0{ω0r0 sin θ0
+cot η[−ω0f cosΘ+ ḟ sinΘ]}, (9b)

where Θ= ω0t+φ0− ζ. Under the initial condition π/7�
θ0 � π (which is necessary to obtain an approximated
analytical solution), the assumption of a typical weak
system-reservoir coupling, γ/ω0� 1, and assuming a time
evolution around t� 2π/ω0, we obtain η̇� 0, such that
η(t)� arccot

{
cot θ0

[
1+ (1−cos θ0/2)1−cos θ0 γt

]}
and ζ(t) = ω0t+

φ0− γcos θ0/2ω0.
From the above result, we obtain the noncyclic, non

adiabatic, and non-Abelian GP associated with the decay-
ing two-level system Ot,nd(t, 0)=U(t, 0)R†(t) eiΩ(t)σz R(0),
where Ω(t)� ω0t[1+ γS(θ0)t/2], S(θ0) =−cos θ0(1/2−
cos θ0+3 cos

2θ0/8)/(1− cos θ0), and

U(t, 0) =

(
UD −U∗OD
UOD U∗D

)
, (10)

with the on- and off-diagonal elements of the over-
lap matrix given, respectively, by UD =N sin(θ0/2)×[
f +2r0 e

−iω0t cos2 (θ0/2)
]
and UOD =N e

−iφ0 cos(θ0/2)×[
f − 2r0 e−iω0t sin2 (θ0/2)

]
. At this point, we stress that

the decay process introduced by the reservoir leads to
a transitional dynamics of the DI basis states, bring-
ing about a not fault-tolerant non-Abelian GP. In the
particular case γ = 0 (nondegenerate dissipative-free
dynamics), the non-transitional evolution during
the time interval 2π/ω0 leads to the cyclic GPs

Ont,nd± (2π/ω0, 0) =±π(1− cos θ0) associated with the
eigenstates |±; t〉, as obtained in refs. [1,22].
Whereas some works are concerned with a formal

definition of the GPs for open quantum systems [12–17],
most of them restrict themselves to compute corrections
to this phase coming from the reservoir [8–11]. From the
formal approach presented in this work we additionally
verify that the reservoir may even change the nature of
the holonomy, from an Abelian (γ = 0) to a non-Abelian
(γ �= 0) one, as it emerges from the above application.
Summarizing, we have presented a general formalism

to compute GPs, starting only from the parallel transport
condition. These GPs transform covariantly and the
approach is applicable to a general scenario, including
adiabatic or nonadiabatic, cyclic or noncyclic, and tran-
sitional or non-transitional evolutions of pure or mixed
states. Although we have used the DIs to compute the GPs
acquired by the basis states of the invariant, the formalism
is applicable to any time-dependent basis states. Besides
reproducing well-known results established in the liter-
ature, our formal definition reveals two striking features
of the GP: it generalizes Wilczek and Zee’s non-Abelian
holonomy [25], in describing nonadiabatic evolutions
where the basis states are parallelly transported between
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distinct degenerate subspaces; secondly, our method
demonstrates clearly that the non-Abelian character of the
GP arises from transitional dynamics, even in nondegener-
ate case. We have shown that the nonadiabatic evolution
of an open two-level quantum system introduces a non-
Abelian holonomy. Both of these features not only deepen
our understanding of GPs, but also offer the possibility
of investigating how to use the non-Abelian holonomy
acquired by transitional dynamics between nondegenerate
states to perform geometric quantum computation.
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