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Abstract – We reformulate the result for the entropy production given in Phys. Rev. Lett., 98
(2007) 080602 in terms of the relative entropy of microscopic trajectories. By a combination
with the Crook’s theorem, we identify the path variables that are sufficient to fully identify
irreversibility. We show that work saturates the relative entropy, and derive the entropy production
for stochastic descriptions.

Copyright c© EPLA, 2008

Recent results, known as fluctuation [1–5] or
work [6–15] theorems, point to the existence of
exact equalities that rule the fluctuating amounts of
work or entropy produced during far-from-equilibrium
processes. For example, the Jarzynski equality states that
〈exp(−βW )〉= exp(−β∆F ), where W is the work needed
to bring a system, in contact with a heat bath at temper-
ature T (β−1 ≡ kBT ), from one initial state prepared in
equilibrium to another one. ∆F is the difference in free
energy of these states (see [10] for a more precise discus-
sion). By the application of Jensen’s inequality, one finds
〈W 〉�∆F . Since (〈W 〉−∆F )/T is the entropy increase
in the entire construction, system plus heat bath, this
result is in agreement with the second law. While such a
result is certainly intriguing and of specific interest for the
study of small systems, where the distribution of work is
relevant and measurable, it provides no extra information
on the actual value of the average work or entropy
increase, which is the central quantity in the second law.
Recently however, the microscopically exact value of these
quantities has been obtained in a set-up similar to that
of the work theorem [16]. The purpose of this letter is to
investigate some consequences of this result, with special
emphasis on the case when the dynamics of the system can
be described in terms of a reduced set of variables. To make
this connection, we will rewrite the main result from [16]
in an alternative form, as an integral over paths. In combi-
nation with a microscopic version of Crooks’ theorem, this
result identifies the “footprints” of irreversibility, namely
the path variables whose statistics are sufficient to

reproduce the exact total entropy production. This
prescription is in agreement with the expressions for
entropy production proposed in the literature for
stochastic models.
We consider a system described by the Hamiltonian
H(Γ, λ) with Γ= ({q}, {p}) a point in phase space,
representing all position and momentum variables. λ is
an external control parameter, for example the volume
or an external field. The system is perturbed away from
its initial canonical equilibrium at temperature T by
changing this control parameter according to a specific
schedule, from an initial to a final value. For simplicity,
we will assume that during this time the system is
disconnected from the outside world, except for the action
of changing λ. This assumption makes the derivation and
discussion simpler, even though the result can be shown to
have a much wider range of validity [17]. We also consider
the time-reversed schedule, in which the system starts
in canonical equilibrium at the same temperature T ,
but at the final value of the control parameter, and the
time-reversed perturbation in λ is applied. We will use the
superscript “tilde” to refer to corresponding time-reversed
quantities (including, by convention, the change of sign
for momentum variables).
The quantity of interest is the amount of work W

performed during the forward process. Since the system
is isolated, W is equal to the energy difference of the
system between final and initial state. While the final state
is the deterministic outcome, prescribed by Hamiltonian
dynamics, of the initial condition, the latter is a random
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variable in view of the canonical sampling. Therefore,
W is also a random variable. In the following, it will
be useful to regard the work W as a functional of the
specific microscopic trajectory followed by the system.
As mentioned above, such a trajectory is completely
specified by the initial condition, but also by the micro-
state Γ of the system at any intermediate time t. In [16],
the following explicit expression was derived for the
corresponding work W (Γ; t):

W (Γ; t)−∆F = kBT ln ρ(Γ; t)
ρ̃(Γ̃; t)

. (1)

Here ρ(Γ; t) and ρ̃(Γ̃; t) are the phase-space densities at
the same (forward) time t in forward and backward experi-
ment. If the system is reconnected after the perturbation
to a (ideal) heat bath at temperature T , the dissipated
work Wdis =W (Γ; t)−∆F will be evacuated to the heat
bath, resulting in a total entropy production equal to
Wdis/T . The above formula is thus the microscopic
analogue of the path-dependent entropy production
proposed in various stochastic models [5,18–26]. Our
emphasis here however is on the average dissipated work
or average entropy production. Starting from the same
equation (1), we derive for this average two different
expressions, the combination of which will lead to a general
prescription identifying the “footprints” of irreversibility.
First, we derive from eq. (1) a symmetry relation for the

probability distribution P (W ) of the work as follows:

P (W ) = 〈δ(W −W (Γ; t))〉
=

∫
dΓρ(Γ; t)δ(W −W (Γ; t))

=

∫
dΓeβ(W (Γ;t)−∆F )ρ̃(Γ̃; t)δ(W −W (Γ; t))

= eβ(W−∆F )
∫
dΓ̃ρ̃(Γ̃; t)δ(W + W̃ (Γ̃; t))

= eβ(W−∆F ) P̃ (−W ), (2)

since the work in the backward processes verifies W̃ (Γ̃; t) =
−W (Γ; t). This microscopic Crooks’ relation was obtained
in the context of Markovian stochastic dynamics by
Crooks [18], and later extended to Hamiltonian dynamics
in [14]. The above result is usually viewed as an interesting
relation for the probability distribution of the work.
It however also provides a revealing expression for the
average work. By solving eq. (2) forW and averaging over
P (W ), one finds

〈W 〉−∆F = kBT
∫
dW P (W ) ln

P (W )

P̃ (−W )
= kBT D(P (W )||P̃ (−W )). (3)

Here, we introduced the relative entropy, or Kullback-
Leibler distance, between two probability distributions

p(x) and q(x) [27]:

D(p||q) =
∫
dxp(x) ln

p(x)

q(x)
. (4)

The relative entropy and its powerful properties will play
a central role in the sequel. At first sight, it may appear
superfluous to express the average 〈W 〉, which is obviously
just an integral of P (W ), in terms of a more complicated
expression involving the second probability distribution
P̃ for the reverse experiment. But the following two
important properties of the relative entropy [27] reveal
an additional benefit. Firstly, a relative entropy is non-
negative. Equation (3) thus implies that the dissipated
work 〈W 〉−∆F is a positive quantity, in agreement
with the second law. Secondly, the relative entropy
expresses the difficulty for distinguishing samplings from
two distributions. The dissipated work is thus equal to
the difficulty to distinguish the arrow of time from the
statistics of the work involved in forward vs. backward
experiment. The main interest of eq. (3) however comes
from its comparison with an expression for 〈W 〉 in terms
of the micro-dynamics, which we proceed to derive below.
By performing the straightforward average in eq. (1),

we find [16]

〈W 〉−∆F = kBT
∫
dΓ ρ(Γ; t) ln

ρ(Γ; t)

ρ̃(Γ̃; t)
= kBTD(ρ||ρ̃).

(5)
In comparison with eq. (3), the above result fully reveals
the microscopic nature of the dissipation, but it may
appear to be of little practical interest. Indeed, it requires
full statistical information on all the microscopic degrees
of freedom of the system (even though only at one
particular time). This stringent requirement is obviously
on par with the generality of the above result, which
is valid however far the system is perturbed away from
equilibrium. The perturbation could therefore imprint its
effect on all the degrees of freedom and their complete
statistical properties would be required to reproduce the
corresponding dissipation.
While eqs. (3) and (5) provide two different exact

expressions for the dissipated work, we note that the
formulas for entropy production in coarse-grained descrip-
tions are usually in terms of path integrals, on par with
the fact that the determinism of Hamiltonian dynamics is
then replaced by stochastic dynamics. Equation (3) can
be considered to be a path integral version since the work
W will, in a reduced description, indeed depend on the
path followed by the coarse-grained variables during the
perturbation. To derive a path integral version of eq. (5),
we invoke another property of relative entropy [27], known
as the chain rule. The relative entropy between probability
distributions p(x, y) and q(x, y) of two random variables
can be written as follows:

D (p(x, y)||q(x, y)) =D (p(x)||q(x))
+

∫
dx p(x)

∫
dy p(y|x)lnp(y|x)

q(y|x) . (6)
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If the random variables are related to each other by a one-
to-one function x= f(y), their conditional probabilities
become infinitely sharp and the second term in the r.h.s.
of eq. (6) vanishes. One then finds

D (p(x, y)||q(x, y)) =D (p(x)||q(x)) =D (p(y)||q(y)) . (7)
In words, the addition of dependent variables does not
modify the relative entropy. Since Hamiltonian dynamics
generates such one-to-one relations between the micro-
states at different times, one can specify in eq. (5), without
changing the value of the relative entropy, the micro-
state Γi of the system at as many additional measurement
points in times ti, i= 1, . . . , n, as one likes:

〈W 〉−∆F = kBT
∫ n∏
i=1

dΓi ρ({Γi; ti}) ln ρ({Γi; ti})
ρ̃({Γ̃i; ti})

. (8)

In the continuum limit covering the entire time interval
(with n→∞), one thus converges to the following result
in terms of a path integral, see also [28]:

〈W 〉−∆F = kBT
∫
D(path)P(path) ln P(path)

P̃(p̃ath)
= kBTD(P(path)||P̃(p̃ath)). (9)

This expression, while containing redundant information
from the point of view of Hamiltonian dynamics, has the
important advantage that it is also exact and formally
identical, as shown below, when the paths are expressed
no longer in terms of microscopic variables but in terms
of an appropriate set of reduced variables. Furthermore,
in the latter case, the path formulation is no longer
redundant since the trajectory captures information about
the eliminated degrees of freedom. The identification of the
minimal set of variables, for which the elimination is valid,
follows from the combination of eq. (9) with the Crooks’
result eq. (3). One finds

D(P(path)||P̃(p̃ath)) =D(P (W )||P̃ (−W )). (10)

This is a surprising relationship: from the chain rule
for the relative entropy, eq. (6), one would expect that
the relative entropy for the paths, which contains full
information on all the microscopic variables, would be
bigger than that contained in the work, which is a single
scalar path-dependent variable. However, both relative
entropies are exactly the same. The combination of eqs. (9)
and (10) allows us now to formulate the following main
conclusions. First, it is impossible via relative entropy to
overestimate the dissipation. Second, the exact dissipation
is revealed by any set of variables that contains the
statistical information about the work. The fact that
the dissipation is underestimated if we do not have this
information is also of practical interest, but will be the
object of a separate paper [29].
One set of variables that captures the information on

the work is now easy to identify: the information is

obviously contained in the dynamic variables that are
interacting with the (external) work-performing device.
More precisely, the work performed along a trajectory
Γ(t), t∈ [0, τ ], is given by

W =

∫ τ
0

dt
∂H(Γ(t), λ(t))

∂λ(t)
λ̇(t) (11)

and can be exactly calculated from the path followed by
the variables coupled to λ. Then it is enough to know the
(statistical) behavior of these variables to reproduce the
statistics of the work, and hence the average dissipation.
Trajectory information of these and only these variables,
along the whole (both forward and backward) process,
is enough to account for the total average dissipation.
In particular, if a stochastic model provides the exact
description of a system in its interaction with an external
device, one needs only the path information of these
variables. Equation (9) is thus valid for a “correct”
stochastic model with the path determined in terms of
the corresponding stochastic variables. As a corollary, we
note that bath variables which are replaced (in some ideal
limit) by a stochastic perturbation, will not appear in the
“path”, which is in terms of the variables of the stochastic
system only.
Let us mention another surprising consequence of the

above equality (10). By applying the chain rule, eq. (6),
one finds

D(P(path|W )||P̃(p̃ath| −W )) = 0, (12)

and hence

P(path|W ) = P̃(p̃ath| −W ), (13)

for allW . Equation (12) means that, by selecting trajecto-
ries corresponding to a given value of work, W and −W ,
in the forward and backward process, respectively, it is
not possible to detect the arrow of time in them. Accord-
ing to eq. (13), the sub-ensembles of these trajectories are
in fact statistically indistinguishable! As an example, the
snapshots of the positions of particles, during the expan-
sion and compression of a gas, will be statistically iden-
tical, when the corresponding amounts of work are each
other’s opposite. For the folding or unfolding of an RNA
molecule [30], the trajectories are statistically indistin-
guishable, again if the amounts of works are opposite. We
however also note that, according to the Crooks’ relation
equation (2), the probabilities for such forward and back-
ward trajectories will be very different if the experiment is
performed in an irreversible way. If, e.g., the forward set
corresponds to typical realizations, the same set of trajec-
tories will be atypical for the backward experiment [28]
(except if the overall process is reversible).
We conclude with a brief discussion about the range

of applicability of the above result. Recall that, in its
derivation, it is assumed that the system starts in canoni-
cal equilibrium in both forward and backward scenario,
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and is disconnected from the heat bath in the inter-
mediate time. However, both the microscopic expression
for dissipation given in eq. (5) and the Crooks’ equal-
ity can be derived for other equilibrium initial condi-
tions [17] so that eq. (9) remains valid for these other
“transient” nonequilibrium scenarios linking equilibrium
states. Furthermore, the formula can also be applied to
nonequilibrium steady states according to the following
argument. Imagine that the perturbation induces, after
an initial transient, a steady state in a sub-part of the
system. In the limit that the other degrees of freedom for
the remainder of the system have an infinitely fast relax-
ation to (local) equilibrium, these will not contribute in the
formula and both the time-irreversibility and dissipation
will be completely captured by the steady-state variables.
This hand-waving argument explains why the formula (9)
is also known to reproduce the correct entropy production
in nonequilibrium steady-state models [31,32], where ideal
heat, work, and/or particle sources are responsible for the
generation of the steady-state.
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[23] Maes C. and Netocÿny K., J. Stat. Phys., 110 (2003)

269.
[24] Wu D. and Kofke D. A., J. Chem. Phys., 123 (2005)

054103.
[25] Seifert U., Phys. Rev. Lett., 95 (2005) 040602.
[26] Andrieux D., Gaspard P., Ciliberto S., Garnier N.,

Joubaud S. and Petrosyan A., Phys. Rev. Lett., 98
(2007) 150601.

[27] Cover T. M. and Thomas J. A., Elements of Informa-
tion Theory, 2nd edition (Wiley, Hoboken, NJ) 2006.

[28] Jarzynski C., Phys. Rev. E, 73 (2006) 046105.
[29] Gomez-marin A., Parrondo J. M. R. and Van den

Broeck C., in preparation.
[30] Collin D., Ritort F., Jarzynski C., Smith S. B.,

Tinoco I. and Bustamante C., Nature, 437 (2005)
231–234.

[31] Luo J. L., Van den Broeck C. and Nicolis G., Z.
Phys. B, 56 (1984) 165.

[32] Blythe R. A., Phys. Rev. Lett., 100 (2008) 010601.

50002-p4


