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PACS 75.25.+z – Spin arrangements in magnetically ordered materials (including neutron and
spin-polarized electron studies, synchrotron-source X-ray scattering, etc.)

PACS 75.47.Lx – Manganites
PACS 77.80.-e – Ferroelectricity and antiferroelectricity

Abstract – An effective model is developed to explain the phase diagram and the mechanism of
magnetoelectric coupling in multiferroics, RMn2O5. We show that the nature of magnetoelectric
coupling in RMn2O5 is a coupling between two Ising-type orders, namely, the ferroelectric order
in the b-axis, and the.coupled magnetic order between two frustrated antiferromagnetic chains.
The frustrated magnetic structure drives the system to a commensurate-incommensurate phase
transition, which can be understood as a competition between a collinear order stemming from
the “order by disorder” mechanism and a chiral symmetry order. The low-energy excitation is
calculated and it quantitatively matches experimental results. Distinct features and the effects of
external magnetic field in the electromagnon spectra in the incommensurate phase are predicted.

Copyright c© EPLA, 2008

Recently, the search for new spin-electronics materials
has led to the discovery of novel gigantic magnetoelectric
and magnetocapacitive effects in rare-earth manganites,
magnetoelectric multiferroics [1,2]. Unlike the magnetic
ferroelectroics studied in the 1960s and 1970s where
magnetism and ferroelectricity couple weakly, the
magnetism and ferroelectricity in the new materials
couple so strongly that the ferroelectricity can be easily
manipulated by applying a magnetic field and the
magnetic phase can be controlled by applying an electric
field [3,4]. This ease of manipulation promises great
potential for important technological applications in novel
spintronics devices.
The physics of the multiferroics involves the interplay

between many degrees of freedom, such as charge, spin,
orbital and lattice. Tremendous effort has been devoted to
decode the fundamental mechanism of the strong coupling
between the magnetism and ferroelectricity. Experimen-
tally, two major classes of magnesium oxide multiferroics,
have been discovered. The first class is the orthorhombic
rare-earth manganites RMnO3 (R=Gd,Tb,Dy, . . .) [5,6],
characterized by spiral magnetism strongly coupled with
the ferroelectricity. An effective Ginzburg-Landau theory
incorporating the space group symmetry and time-reversal
symmetry has been constructed to explain the fundamen-
tal physics [7]. Microscopically, Dzyaloshinskii-Moriya
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spin-orbit interaction is the underlying mechanism
of the ferroelectricity [8–10] and an electric current
cancellation principle related to spin-orbit coupling
can also explain the physics [11]. The second class of
materials are the manganese oxides with general formula
RMn2O5 (R=Y,Tb,Dy, . . .) [12–15]. These insulating
materials consist of linked Mn4+O6 octahedra and
Mn3+O5 pyramids with a Pbam space group symmetry.
Unlike that in RMnO3, the ferroelectricity in RMn2O5
exists in a collinear magnetic phase, suggesting that a
different mechanism is involved in the interaction between
the ferroelectricity and magnetism.
In this letter, we develop an effective model to explain

the phase diagram and the mechanism of magneto-
electric coupling in RMn2O5. Building upon experimental
facts and the space group symmetry [4,12–20], we show
that the magnetoelectric interaction is between two
Ising-type orders, the ferroelectric order in the b-axis
and the coupled magnetic order between two frustrated
antiferromagnetic chains. The effective model of the
magnetism can be derived from a microscopic model with
nearest-neighbor magnetic exchange. We show that the
effective model nicely captures the phase diagrams of
RMn2O5. At high temperature, the commensurate (CM)
collinear order is stable due to the “order by disorder”
mechanism [21–23] and the existence of an easy axis.
As the temperature decreases, a chiral symmetry order
replaces the collinear order, and the magnetic structure
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becomes incommensurate (ICM). This model predicts
that an external magnetic field along the b-axis can drive
the system from the ICM phase to the CM phase, while
that along the a-axis can drive the system from the CM
phase to the ICM phase. We also show that the model
not only quantitatively explains the experimental results
on the electromagnon spectra [20], but also predicts the
following distinctive properties of low-energy excitations:
1) the emergence of electromagnons in the ICM phase
when there is no electromagnons at the lowest energy in
the CM phase; 2) the presence of distinguished kinks in
the energy dispersions of the electromagnons, unlike the
dispersion of normal phasons in conventional ICM phase
which has a finite energy jump at the half of the ICM
wave vector [24]; 3) a double-peak structure at low energy
in optical conductivity due to the absorption of the elec-
tromagnons with a selection rule of the electric field along
the b-axis; 4) no new peak splitting in the electromagnon
spectra in the presence of external magnetic field along
the a- or b-axis, which differs from the conventional
picture of the Zeeman energy splitting of magnons;
5) the increase (decrease) of the energy gaps of the
electromagnons as the field increases along the b(a)-axis.

Magnetoelectric coupling. – The ferroelectricity in
RMn2O5 is substantially different from that in RMnO3.
Experiments have shown that the ferroelectricity only
exists along the b-axis in RMn2O5, but can be observed
in both the a and c directions in RMnO3. Most impor-
tantly, recent measurements of optical conductivity have
revealed opposite selection rules for these two materials.
In RMnO3, low energy absorption is observed when the
electric field is perpendicular to the static ferroelectric
polarization direction [20,25]. The opposite is true in
RMn2O5, namely, low energy absorption is only observed
when the electric field is polarized along the b-axis [20].
This suggests that the electric degree of freedoms along
the a- and c-axis simply has no coupling to magnetic
degrees of freedom at low energy. Only the ferroelectricity
along the b-axis Pb couples to the magnetic degree of
freedom. The order parameter Pb is an Ising-type order.
Therefore, the nature of the magnetoelectric coupling
in RMn2O5 is a coupling between two Ising-type orders.
(In the following paper, we refer to the a-, b-, c-axis as the
x -, y-, z -axis, respectively, for convenience i.e. Py = Pb.)
What is the Ising order on the magnetic side? The

answer to this question can be obtained by in-depth
analysis of the magnetic structure and the space group. As
shown in [17,18], the main magnetic structure along the
a-axis is two antiferromagnetic chains joined by Mn3+ and
Mn4+ atoms (see fig. 1). The antiferromagnetic coupling
between the two chains indicated by the red lines in fig. 1
is completely frustrated. Therefore, in an effective model,
we at least need two antiferromagnetic orders �n1 and �n2 to
describe the magnetic physics. A possible Ising order from
these two vector magnetic orders is �n1 ·�n2. Due to the
experimental fact that no magnetic moment in the c-axis

Fig. 1: (Colour on-line) A sketch of spin structures from a top
view along the c-axis in one unit cell of RMn2O5. The red lines
reflect the frustrated magnetic coupling between two chains.

is observed, this naturally leads to the construction of the
possible lowest-order magnetoelectric coupling between Py
and �ni, i= 1, 2 as

Hem = λxPyn
x
1n
x
2 +λyPyn

y
1n
y
2. (1)

The possible differences between the coupling parameters
λx and λy reflects real lattice structure.
Now we show that eq. (1) is consistent with the space

group analysis. The space group of RMn2O5 has been
analyzed in [26]. The lattice of RMn2O5 belongs to Pbam
structure. With the modulation vector q= (1/2, 0, kc), the
space group has a single two-dimensional irreducible repre-
sentation in which the four symmetry lattice transforms
can be represented by I, mx = σx, my = σy, mxmy = iσz,
where σi are Pauli matrices. Symmetry-adapted variables
can be constructed as linear combinations of spin oper-
ators that transform in accordance with these matrices.
The ion spins in one unit cell are numbered from one
to eight as shown in fig. 1. The space inversion symme-
try, together with the experimental facts that S1 = S3,
S2 = S4, S5 = S7, S6 =−S8 and that the spin moments are
only in the ab-plane, suggests that the possibilities of the
magnetoelectric coupling term can be narrowed down to

Hem = iλxPy(−Sx2 (q)Sx�6 (q)+Sx1 (q)Sx�5 (q)− c.c)
+ iλyPy(−Sy2 (q)Sy�6 (q)+Sy1 (q)Sy�5 (q)− c.c). (2)

Converting these spin operators to the two antiferro-
magnetic orders, we can simplify eq. (2) to eq. (1).
While it is easy to understand the time-reversal

invariance in eq. (1), the parity invariance is not manifest.
Physically, this result comes from the antiferromagnetic
order along the a-axis. We can understand it by examining
fig. 1. By picking any pink bond, for example, S1−S5, we
see that after space inversion, S5 will become S7 and S1
will become S′3 (S3 in the neighbor unit cell). From the
antiferromagnetic structure, S5 = S7 and S1 =−S′3, there-
fore �n1 ·�n2 changes sign under parity transformation, i.e.,
if we call the antiferromagnetic order in the chain including
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Fig. 2: (Colour on-line) A sketch of lattice structures of two
frustrated coupled antiferromagnetic Heisenberg models in two
dimension.

S1 as �n1 and that in the chain including S5 as �n2, under the
parity transformation, �n1 goes to −�n1 and �n2 goes to �n2.
Effective magnetic model. – In condensed-matter

physics, an effective model at low energy is largely
independent of microscopic models if they share the
same essential physics. Therefore, one can derive the
effective model on a much simplified lattice structure.
In the case of RMn2O5, the important magnetic physics
along the a-axis are two antiferromagnetic chains with
frustrated coupling [17,18]. Experiments have shown a
1/4 commensurate magnetic wave vector along the c-axis,
which can also be viewed as an antiferromagnetic order
if the unit cell is doubled along the c-axis. Therefore,
we can derive the effective model from a microscopic
model with two antiferromagnetic orders defined on the
two interpenetrating sublattices as illustrated in fig. 2,
where J1,(2) are the effective antiferromagnetic exchange
couplings which establish two antiferromagnetic orders,
J3 is the effective frustrated coupling between two chains
in one unit cell along the a-axis and J4 is the effective
frustrated coupling between two chains in two neighbor
unit cells along the c-axis. Using the standard field
theory [23,27], we can show that the effective field theory
described by the two antiferromagnetic orders �n1 and �n2
is given by the following Hamiltonian:

Hm =

∫ {∑
i

[
ρ1s

2

(
∂ni

∂x

)2
+
ρ2s

2

(
∂ni

∂z

)2]
+α

(
n1
∂n2

∂x

− n2 ∂n1
∂x

)
− g̃(T )(n1 ·n2)2−D0

∑
i

(nxi )
2

}
dxdz. (3)

where g̃(T ) = g̃0+ g̃1T is a temperature-dependent
parameter induced by the quantum and thermal
fluctuation, the parameter α reflects that the intra-
frustrated coupling in one unit cell is larger than the
inter-frustrated coupling along the a-axis between two
neighbor unit cells along the c-axis, and the parameter
D0 describes a possible magnetic easy axis along the
a-axis. From the microscopic coupling parameter, g̃1 =
0.26(J1+J2)Sa

−2(J3+J4
J1+J2

)2, g̃2 = 2.4
g̃1

(J1+J2)S
, ρ1s = J1S

2,

ρ2s = J2S
2, α= (J1+J2)S

2

4
(J3−J4)
(J1+J2)a

. Adding the lattice

dynamics, we reach the total effective Hamiltonian as

H =

∫
dxdz

[(
κ

2
P 2y +

1

2M
π2y

)
+Hem

]
+Hm, (4)

0

TC

TC2

TIC

TIC TC2 1TC

Py

T

T

gc

Collinear phase 

Incommensurate
Phase

Paramagnetic
Phase

(a)

g

1

Fig. 3: (Colour on-line) The phase diagram as g0 vs. T . The
vertical dashed line represents phase transitions in most of
RMn2O5 materials. The inset (a) is the ferroelectricity as a
function of temperature.

where πy is the conjugate momentum of Py. The Hamil-
tonian in eq. (4) precisely captures the phase diagrams
of RMn2O5 [4,15,16]. To study the magnetic phase
diagram, we can integrate out the lattice dynamics.
After integrating out the lattice dynamics, the effective
magnetic Hamiltonian is the Hamiltonian in eq. (3)
with a replacement of g̃ by g(T ) = g0+ g̃1T , where

g0 = g̃0+
λ2+
8κ , D0 by D=D0+

λ+λ−
4κ and an additional

term −γ(nx1nx2 −ny1ny2)2 where γ = λ
2
−
8κ and λ± = λx±λy.

It is clear that the α-term favors an ICM phase, while
g(T ), γ and D favor a CM phase. If D �= 0, at relatively
high transition temperature Tc1, the model exhibits a first
phase transition to a collinear magnetic phase with order
〈nx1nx2〉 �= 0 and then exhibits a second phase transition
at Tc2 <Tc1 with order 〈ny1ny2〉 �= 0. The ferroelectricity
is given by 〈Py〉=−λx〈n

x
1n
x
2 〉+λy〈ny1ny2〉
κ

. With the proper
values of α, at a low temperature TIC , the ICM phase can
win over the commensurate magnetic phase. In the ICM
phase, the global average, 〈Py〉= 0. Figure 3 sketches the
phase diagram. The phase diagram qualitatively matches
the current experimental results on the phase diagram
of RMn2O5 [4,15,16]. Results from mean-field or large-N
limit calculation, using the real experimental data as
input, will be reported elsewhere [28].
In the following, we calculate the low-energy excitations

from this model and we show that it matches experimental
results very well. We assume ρ1s = ρ2s = ρ for simplifying
our calculation. The dispersion of low-energy excitations
along the z -direction has a simple form, ρk2z , regardless
of the ground states. Therefore, we only need to calculate
the dependence of the dispersion on kx.

Energy dispersion of magnons in the CM phase.

– In the CM phase, the ferroelectricity, 〈Py〉=−λ++λ−2κ .
The dynamics of magnons and the dynamics of electric
degree of freedoms are decoupled. To show this, one can
expand the free energy in the vicinity of the ground state
and show that there is no second-order coupling between
the lattice and magnetic dynamics. Therefore, there is no
electromagnon excitation. The energy dispersions of the
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two magnons in the CM phase are given by

E±cm(kx) =
√
ρ(ρk2x+ γ+ g+D±

√
(g− γ)2+α2k2x). (5)

Electromagnons in the ICM phase. – In the
ICM phase, 〈Py(x)〉=−λ+2κ cos(qx), where q is the ICM
wave vector. The magnon and phonon dynamics are
coupled due to the ICM modulation. Therefore, the low-
energy excitations are electromagnons. To calculate the
dispersion, we expand the Hamiltonian in the vicinity of
the ICM phase and let u1, u2 and β be the deviations
of the first, second magnetic orders and lattice position
from the mean-field solution, respectively. The fluctuation
up to the second order of these dynamic variables is given

by δH(2) = δH
(2)
0 + δH

(2)
1 . The first term is the free part

given by

δH
(2)
0 =

∑
kx

(
2∑
i=1

Ei(kx)µi(kx)µi(−kx)+ω20β(kx)β(−kx)
)

(6)

with E1(kx) = ρk
2
x+

Da1
2 +

λ−(a1λ+λ−)
4κ , E2(kx) =

E1(kx)+∆0, where ∆0 = αq− 2g̃− λ
2
−
4κ and the phonon

frequency ω0 =
√
κ (for convenience, we have taken the

massM = 1 in eq. (4)). The second term is the interaction
part

δH
(2)
1 =

∫
dx

[
αa1 cos(qx)u

′
1u2+D sin(qx)u1u2

+
1

2
β(−λ−u1 sin(qx)+λ+u2)

]
. (7)

In eq. (7), the terms on the first line couple u1(kx)
with u2(kx± q) and vice versa and modify the gap ∆0
between two magnon modes. In general, as shown in
fig. 4, the coupling creates a distinguished kink in the
dispersion curve around kx = q/2 rather than a finite
energy jump at kx = q/2 which is normally expected
in the ICM phase described in a simple Sine-Gordon
model [24]. The terms on the second line describe the
coupling between the magnon and the phonon. The
coupling results in two general effects. First, the coupling
leads to a change of phonon frequency. Under the
condition ω20� ρEi(0), the shift frequency of the phonon
is roughly given by δω2 =

ρλ2+
4(ω20−ρE2(0)) +

ρλ2−
8(ω20−ρE2(q)) .

Second, the coupling allows us to measure the magnons
in optical conductivity. The optical conductivity is given
by σ(ω) = ωIm[Gββ(ω, 0)], where Gββ(ω, kx) is the full
propagator of the β. In our model, we expect double peaks
in the optical conductivity at the gap energy of the two
magnons in the ICM phase. Up to the second order, we

have, Im[Gββ(ω, 0)] = π[ρ
λ2−
8ω40
δ(ω2− ρE1(q))+ ρ λ

2
+

4ω40
δ(ω2−

ρE2(0))+ (1− ρλ
2
−/2+λ

2
+

4ω40
)δ(ω2−ω20 − δω2)]. In fig. 4, by

numerically solving the dynamical equations of δH(2),

Fig. 4: (Colour on-line) The numerical result of the opti-
cal conductivity vs. frequency with the parameters set to
{ρ, α, λ+, λ−, κ,D, g}= {2, 0.4, 0.06, 0.06, 2, 0.002, 0.005}. The
inset is the dispersion of the electromagons.

we plot the result of σ(ω) and the dispersions of
electromagnons with a typical parameter setting
{ρ, α, λ+, λ−, κ,D, g}= {2, 0.4, 0.06, 0.06, 2, 0.002, 0.005}.
Quantitative comparison with experiments.
– The electromagnon has been detected in a recent
paper [20]. From experiments, there are two important
quantitative values. One is the energy of the elec-
tromagnon (the peak position) and the other is the
intensity of the electromagnon peak. From our model,
we predict two close-by electromagnon peaks whose
positions are given by ω1 ∼ ω2 ∼ ρα/2, where α= 2q.
From experiments [4,12–16,18], q≈ 0.12, which implies
α≈ 0.24. For the peak position at 10 cm−1 as shown in
ref. [20], ρ� 10meV, which is of a right order as far as its
paramagnetic-antiferromagnetic transition temperature
is concerned. From our model, the intensity of the
electromagnon peak can also be calculated, which is given

by Itheory =
3πne∗2ρλ2+
4�2κ2 . If we take λ+ ∼ λ− ∼ λ, and make

use of Py = ne
∗(λ++λ−)/κ, we have λ= κPy/(2ne∗)

where n is the volume of a lattice unit cell. We have

Itheory ∼
3πρP 2y
16�2n

. (8)

Since all the variables can be measured or determined
by the material itself, the result provides an indepen-
dent check of our theory. Substituting the experimental
values of n∼ 3.6× 10−3A−3 and Py ∼ 100µC/cm2 and
ρ∼ 10meV, we obtain I ∼ 1014 Ω−1m−1 s−1, a number
that is in a good agreement with the experimental result,
4× 1013Ω−1m−1 s−1, considering the complicated nature
of materials. Finally, given that κ∼ 1 eV/A2 and e∗ ∼
10e [8], we can estimate the order of the magnetoelectric
coupling constant to be of the order of 1meV.

Effects of external magnetic field. – In our model,
since �n is the staggered moment field, the effect of an
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external magnetic field H is equivalent to creating an
easy plane. However, since the staggered moment is in
the ab-plane, the effect of the field is only important when
the field is along the a- or b-axis. In the presence of the
easy-axis parameter D along the a-axis, the effects of the
external magnetic fields along the a-axis, Ha, and b-axis,
Hb, have exact opposite effects. They simply change D to

D(Ha,Hb) =D−H2a/2ρ+H2b /2ρ. (9)

From E1(k), E2(k), eq. (7) and eq. (9) lead to a few
important and immediate predictions. First, the effects of
Ha and Hb do not depend on their directions along their
own axis. Second, Hb can drive the system from the ICM
phase to the CM phase, while Ha can drive the system
from the CM phase to the ICM phase. This result has been
observed experimentally in [12]. Third, in the ICM phase,
the energy dispersions of the electromagnons as a function
of Ha and Hb can be predicted. From E1(k), E2(k) and
eq. (7), the energy of the electromagnons is expected
to increase (decrease) as Hb (Ha) increases. Finally, the
external magnetic field does not add additional peaks,
which contradicts the conventional picture of the Zeeman
energy splitting of magnons.
In conclusion, we develop an effective model that

explains the phase diagram and the mechanism of magne-
toelectric coupling in multiferroics RMn2O5. To our
knowledge, this is the first theoretical effective model for
these materials. A detailed study of low-energy excitations
is performed to explain the selection rules of electro-
magnons in optical conductivity measurements [20]. Our
theory not only quantitatively matches experimental
results of the energy and intensity of electromagnons
but also predicts the electromagnon dispersion and its
dependence on the external magnetic field that can be
tested in future experiments.
There is a fundamental difference of the magnetic

structures between RMn2O5 and RMnO3. The magnetic
structure in RMn2O5 requires two independent antiferro-
magnetic order parameters in one unit cell due to the
complexity of its unit cell, while a single magnetic order
parameter sufficiently describes the magnetic structure in
RMnO3. This fundamental difference shows the possibility
of different effective theories in these two different mate-
rials. We expect that the model presented here can be
applied to other multiferronics materials where ferroelec-
tricity is correlated to a collinear magnetic phase.
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