Uncovering latent singularities from multifractal scaling laws in mixed asymptotic regime. Application to turbulence

, , and

Published 10 June 2008 Europhysics Letters Association
, , Citation J.-F. Muzy et al 2008 EPL 82 60007 DOI 10.1209/0295-5075/82/60007

0295-5075/82/6/60007

Abstract

In this paper we revisit an idea originally proposed by Mandelbrot about the possibility to observe "negative dimensions" in random multifractals. For that purpose, we define a new way to study scaling where the observation scale ℓ and the total sample length are, respectively, going to zero and to infinity. This "mixed" asymptotic regime is parametrized by an exponent χ that corresponds to Mandelbrot "supersampling exponent". In order to study the scaling exponents in the mixed regime, we use a formalism introduced in the context of the physics of disordered systems relying upon traveling wave solutions of some non-linear iteration equation. Within our approach, we show that for random multiplicative cascade models, the parameter χ can be interpreted as a negative dimension and, as anticipated by Mandelbrot, allows one to uncover the "hidden" negative part of the singularity spectrum, corresponding to "latent" singularities. We illustrate our purpose on synthetic cascade models. When applied to turbulence data, this formalism allows us to distinguish two popular phenomenological models of dissipation intermittency: We show that the mixed scaling exponents agree with a log-normal model and not with log-Poisson statistics.

Export citation and abstract BibTeX RIS

10.1209/0295-5075/82/60007