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Abstract – We have explored the patterns of drainage in a bamboo foam, i.e. a foam consisting
of an arrangement of parallel soap films with equidistant spacing. We find an intriguing variety
of such patterns, both static and dynamic. All involve the formation of drainage channels at the
wall of the column, which are variously arranged and in some cases rotating and oscillating.
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Introduction. – One of the simplest systems that can
be made from soap bubbles is “bamboo foam” [1–3], in
which the bubbles are trapped in a narrow cylindrical
tube. They are separated by transverse soap films, at
whose perimeter a surface Plateau border, or Gibbs ring,
is formed. When this column is placed vertically and addi-
tional liquid is introduced at the top, its behaviour is
anomalous, in comparison with the drainage properties
of bulk foams. If the tube has a radius less than a certain
critical value, defined below, the additional liquid accumu-
lates at the top, there being no measurable drainage via
the wetting films on the tube wall. This observation [4] is
consistent with the classic studies of Bretherton [5]. In the
present letter we closely examine what happens for larger
tube radii, and report a rich variety of static and dynamic
patterns of drainage, of which examples are shown in
figs. 1 and 2.
Throughout all of our experiments the bubbles remain

arranged in the bamboo structure, with the addition of
vertical channels permitting drainage between the hori-
zontal surface Plateau borders. The observed drainage
patterns are therefore distinct from those previously
reported, which involve structural rearrangements of the
bubbles themselves [6,7].

Experimental arrangement. – The critical tube
radius Rc for drainage is approximately [4]

Rc = 0.92l0, (1)

where l0 =
√
σ
ρg
. This is the familiar capillary length of a

liquid of density ρ and surface tension σ under gravity g.

(a)E-mail: stefan.hutzler@tcd.ie

For typical surfactant solutions σ is of the order of 25 to
30mN/m. For the 0.3% vol. solution of the commercial
detergent Fairy Liquid used in this experiment the value
of l0 is about 1.7mm.
We used plain glass tubes, 50 cm in length, with radii

between 1 and 10mm. Bubbles were created by blow-
ing nitrogen, saturated with perfluorohexane vapour to
prevent coarsening, into the Fairy Liquid solution and then
collected in the vertically aligned glass tubes. Care was
taken to ensure the accurate vertical alignment of the tube;
failure to do this was seen to introduce artifacts. Bubble
volumes were in the range from 30mm3 to 104mm3. In
each experiment the ratio of tube to bubble radius was
kept in the range between 0.5 and 1.1, thus resulting in
the formation of a bamboo structure [8].
Solution was added at the top of the bamboo foam using

a peristaltic pump and a rubber tube which was attached
to the side of the glass tube. For the photos and videos
that were taken, dyes were added to the solution.

Ordered drainage patterns. – In addition to the
tube radius R, the volume rate Q of addition of liquid
is important in determining the type of drainage pattern.
These two parameters may be used to define regimes of
occurrence of the different patterns, as in fig. 3, in a “phase
diagram”. This diagram is based on about 200 individual
observations.
Regime A: no observed drainage. As previously

discussed [4], no drainage is observed in this regime, even
after very long times (several days).
Regime B: Here there is continuous drainage through

vertical channels at the wall of the tube, connecting succes-
sive Plateau borders. The channels are fixed in position.
They form a static alternating pattern along the tube

54005-p1



V. Carrier et al.

(a) Regime E (b) Regime B (c) Regime B
(wide tube)(narrow tube)

Fig. 1: Drainage of bamboo foams proceeds through vertical
channels (visible as dark vertical stripes) that are formed at
the wall of the tube, connecting successive horizontal Plateau
borders. For the examples shown here the location of the
channels does not change in time. Depending on the flow rate of
liquid added at the top, successive channels are either separated
by a constant spacing around the tube diameter (regime B), or
all aligned with the feeding point (regime E).

axis. For tubes with radii equal or less than the capillary
length, successive channels are situated at opposite sides
of the tube, see fig. 1(b). For larger tube radii we find that
the spacing between two channels (measured around the
circumference of the tube) is about three times the capil-
lary length, i.e. approximately 5mm. This is independent
of flow rate, tube radius and the spacing between consec-
utive films. In this case the channels are thus located on
the same side of the tube, as is shown in fig. 1(c).
Regime C: In this regime the pattern of channels is no

longer static. Downwards propagating oscillations occur
(see fig. 2), with wavelengths greatly exceeding the spacing
of the transverse films and periods ranging between thirty
seconds and three minutes.
Regime D: Another phase is observed between regime B

and C which corresponds to a chaotic motion of the
channels. This incorporates oscillations, rotations inside
the tube in either direction, and also periods where no
motion occurs.

0 seconds 4 seconds 12 seconds8 seconds

time

Regime C

Fig. 2: For an appropriate choice of flow rate and tube radius,
consistent with regime C of fig. 3, the channels connecting
successive horizontal Plateau borders are not fixed but oscillate
in a propagative wave. The amplitude of the oscillation is
approximately one quarter of the perimeter of the tube, i.e.
the channels stay on the same side of the tube.

Regime E: Finally for flow rates above 50mm3/s, the
channel is a static straight line aligned with the feeding
point (see fig. 1(a)).

The oscillatory regime. – From fig. 3 we can see that
regime C is roughly defined by flow rates Q between 5 and
50mm3/s and tube radius R exceeding about 2.3 times the
capillary length. From visual observations we find that the
amplitude of the wave is almost always close to one quar-
ter of the perimeter of the tube, independent of the values
of R, L and Q. The wavelength λ is proportional to the
spacing L between consecutive films. Its dependence on
the flow rate is shown in fig. 4. For small values of Q
the ratio λ/L varies strongly and appears not to be well
defined, while for higher values of Q it is independent of
Q. We found that this Q-independent value of λ/L gener-
ally increases with the tube radius, ranging from λ/L� 4
for R/l0 = 2.9 to λ/L� 16 for R/l0 = 4.5. However, occa-
sionally we found that for the same value of R/l0 the
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Fig. 3: “Phase diagram” for the flow dynamics of bamboo foams
as a function of flow rate Q and tube radius R (normalised by
the capillary length l0 = 1.69mm). The symbols correspond to
experimental observations and the lines and shaded regions
are guides to the eye. The hatched region corresponds to the
no-flow regime A, the grey regime represents the static flow
patterns of regime B (open squares) and E (crosses). Regime C
is characterised by oscillatory motion of the channels. Region D
with cross-hatched shading corresponds to chaotic motion of
the channels.

flow rate Q(mm  s  )3 −1

Fig. 4: Regime C: for values of flow rate Q exceeding 15mm3/s
the wavelength λ (normalised by the spacing L of the soap
films) is independent of Q. The data shown is for a ratio of
tube radius R to capillary length l0 of 2.9 and 4.5, respectively.

wavelength can take on integer multiples of the minimal
measured wavelength λ/L� 4, i.e. there is evidence of
harmonics.
Values for the frequency ω of the wave as a function

of flow rate Q were obtained using a stopwatch. We find
that ω increases linearly with Q, with a slope that is
inversely proportional to the bubble spacing L. This is
shown in fig. 5 where the plot of ωL as a function of
flow rate collapses data for three different values of L onto
one straight line, thus establishing ω= cQ/L, where c is a
proportionality constant.
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Fig. 5: Regime C: the frequency of the oscillation increases
linearly with flow rate and is inversely proportional to the
spacing L of the soap films, resulting in Lω∝Q. The data
shown is for L= 5.4mm (squares), L= 9.5mm (crosses) and
L= 12mm (triangles). Here the tube radius was kept constant,
R/l0 = 2.9.
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Fig. 6: Regime C: Lω is proportional to Q, independent of the
tube radius. The data shown is for R/l0 = 2.9 (squares), R/l0 =
3.7 (crosses) and R/l0 = 4.5 (triangles). Here L� 9.5mm is
kept constant for all the data.

Figure 6 shows the variation of ωL with Q for bamboo
foams in tubes of three different radii. The value of c is
thus independent of the tube radius, c= 6.87× 103mm−2
as obtained from least-square fits of our data.

Discussion. – The forces responsible for the observed
flow regimes are not immediately obvious. The Reynolds
number Re, defined as Re= Q

νL
, where ν is the kinematic

viscosity (we take the value for water, ν = 1.0mm2s−1)
and L the distance between two films (L≈ 1 cm), is of the
order of unity for the range of values of Q studied. This
implies that both viscous and inertial forces may play a
role in the observed drainage patterns.
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Their explanation probably requires an answer to the
following question: how can a channel coexist with a
wetting film? The Laplace pressure inside the channel is
higher than in the wetting film, which requires a balancing
force for stabilisation. By analogy with the “tears of
wine” and marginal regeneration this could be related
to Marangoni forces, but more experiments and theory
(see, for example, the numerical work on flow instabilities
in draining thin liquid films in [9]) are clearly needed
to clarify this. Also, while our experiments with other
surfactants show similar drainage patterns, the details of
the phase diagram differ, indicating a strong dependence
on the physico-chemical characteristics of the surfactants.
In particular when using the surfactant SDBS we have
observed a different regime, where all channels rotate
together around the tube with a constant velocity. Also,
regimes C and D are shifted to higher tube radii, and the
rotation regime appears at normalised tube radii in the
range 2<R/l0 < 3.
This observed list of phenomena is very interesting in

comparison with other one-dimensional systems which
show non-linear dynamics. Examples are the printer’s
instability [10–12], the fluid fountain [13–19] and the
meandering flow of a rivulet of surfactant solution
descending under gravity between two narrowly spaced
glass plates [20]. The drainage patterns in bamboo foams
appear to have some similarities with these systems,
e.g. the parity-breaking instability. However, while in
these systems the length scale is an intrinsic constant
parameter, in the bamboo foam it is a tunable parameter
(via flow rate or tube radius). This opens the door
to numerous experimental and theoretical studies of
the behaviour of such systems with composite length
scales. Yet another important feature in the observed
oscillations of the vertical channels in our experiments is
still puzzling: contrarily to most 1d non-linear dynamical
systems, wavelength doubling is almost never observed,
and quite surprisingly, stable Q-independent large wave-
lengths occur (up to 22L for large tube radii); also this
remains to be understood.
While we are not in a position to propose a definitive

theory of the observed drainage patterns, some prelimi-
nary ideas are included in the appendix. The basic model
that we suggest successfully mimics the main features of
the system. However, the phase diagram built from the
model still does not quantitatively look like the experi-
mental one, which is not surprising, given the extreme and
speculative nature of the model. However, it does suggest
that the ingredients of a full and well-founded theory need
not be very complex.
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Fig. 7: Sketch of the geometry in our model. The horizontal
films are bent at an angle Θn to the horizontal due to flow.
The vertical channels are in contact with the cylinder walls,
and are located at angles Φn.

Appendix

Phenomenological theory. – We take for granted
the existence of the vertical channels (at the wall of
the tube) that connect the horizontal Plateau borders,
each of which has a position represented by an angle
Φn, where channel n connects Plateau border n and
n+1. Each Plateau border is deflected from the horizontal
by an angle Θn, as sketched in fig. 7. The analogies
mentioned in the previous section Discussion suggest the
following interpretation: successive channels are pulled
apart by centrifugal forces due to flow inertia, as in rivulet
instability [20], and this is opposed by the time-dependent
bending of the film, due to flow inertia again. A simple
model can be constructed to illustrate this idea, based on
the two coupled variables Φn and Θn, the displacement of
the channels and the tilt of the borders, respectively.
The equation of evolution for Θn is written as a balance

between three forces or moments,

flR
2 dΘn
dt
= ρvQR sin(Φn−Φn−1)−CσR2Θn. (A.1)

The term on the left-hand side is due to viscous forces,
where fl is the coefficient of the drag of the film on
the plate (assumed for simplicity to be linear) and R is
the tube radius. The first term of the right-hand side
is the moment due to the change of momentum at the
channel/border junction (v is the velocity of the flow and
Q is the flow rate). Consideration of the special cases
Φn =Φn−1 and Φn =Φn−1+π suggests the sinusoidal
form used here. The motion is opposed by the restoring
force (second term on the right-hand side) due to surface
tension σ, where C is a constant.
Assuming Poiseuille flow through the channels one

obtains

v=

(
ρg

2η

)1/2(
Q

K1

)1/2
, (A.2)
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where η is the liquid viscosity and K1 is a numerical factor
accounting for the flow in the channel [21–23].
The equation of evolution for Φn is written as a balance

of three forces,

f2Lc
dΦn
dt
= ρvQ[Sgn(Φn−Φn−1)+Sgn(Φn−Φn+1)]
−BapbΘn. (A.3)

The left-hand side represents the viscous forces, propor-
tional to the length of the channel, Lc =L− lhf , where lhf
stands for the height of the horizontal film and is approx-
imately equal to 2l0; f2 is a coefficient of friction for the
channel on the plate. The first term on the right-hand
side corresponds to the horizontal component of the rate
of change of momentum of the descending fluid. Sgn is
the sign function, defined by Sgn(x) = x

|x| . The last term
represents the attraction between successive channels due
to film bending, which we set proportional to the product
of the cross-section of the channel apb =Q/v and Θn, B
is a constant. As the channel is in a tube, Φn is defined
modulo 2π in the range [−π,+π].
Using eq. (A.2), the two eqs. (A.1) and (A.3) reduce to

f ′1
dΘn
dt
=
Q3/2

R
sin(Φn−Φn−1)−C ′Θn (A.4)

and

f ′2Lc
dΦn
dt
= Q3/2[Sgn(Φn−Φn−1)+Sgn(Φn−Φn+1)]

−B′Q1/2Φn. (A.5)

A numerical solution of this set of equations shows that
this model has four states similar to the experimental
ones: at low values of Q the vertical channels are located
opposite to each other for small R, and they alternate at
high R; at high values of Q, the channels rotate for small
values of R, and they oscillate at high R, with a chaotic
regime between the rotation and oscillation attractors,
where the channels either rotate or oscillate.
In the alternate state the separation between successive

channels slightly decreases with Q, roughly as Q−1/2,
and increases with surface tension. At intermediate flow
rates propagative oscillations develop, with an amplitude
equaling a quarter of the tube perimeter, independent
of Q. The frequency varies as ω∝ Q√

L−2l0 . The wavelength
decreases with Q and tends towards 2L, which is two
bubbles, in a wavelength doubling or “optical” mode
[16–19]. The rotation state corresponds to a rotation of

all the channels with a frequency ω∝ Q3/2

L−2l0 , each channel
rotates in opposite direction to the previous channel, again
showing wavelength doubling.
Furthermore, the experimentally observed aligned state

at high Q can be modelled by adding a destabilising term
Θ2n to the right-hand side of eq. (A.5).
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