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Abstract – We show that in cosmology the gravitational action of the far away matter has quite
relevant effects, if retardation of the forces and discreteness of matter (with its spatial correlation)
are taken into account. The expansion rate is found to be determined by the density of the far
away matter, i.e., by the density of matter at remote times. This leads to the introduction of an
effective density, which has to be five times larger than the present one, if the present expansion
rate is to be accounted for. The force per unit mass on a test particle is found to be of the order
of 0.2 cH0. The corresponding contribution to the virial of the forces for a cluster of galaxies is
also discussed, and it is shown that it fits the observations if a decorrelation property of the forces
at two separated points is assumed. So it appears that the gravitational effects of the far away
matter may have the same order of magnitude as the corresponding local effects of dark matter.

Copyright c© EPLA, 2008

Introduction. – In most cosmological models usually
considered, matter is dealt with as a continuous medium.
The aim of the present paper is to point out how
relevant are the gravitational effects which are due to
the discreteness of matter, thought of as constituted of
galaxies described as point particles, if one takes into
account both the role of retardation of the forces (as
required by general relativity) and the correlated nature
of the positions of the galaxies. Concerning the role
of discreteness, the key point is that the gravitational
force on a test particle due to a continuous matter with
a spherically symmetric density vanishes. Instead, for
a matter constituted of point particles whose positions
are dealt with as random variables with a spherically
symmetric probability distribution, it is only the mean
gravitational force that vanishes, while the fluctuations
can be very large. This actually is the point of view
that was taken by Chandrasekhar and von Neumann in
connection with the motions of stars (see the review [1]).
They showed that, if the positions of the stars about
a test particle are considered as (independent) random
variables, then the force on the test particle may be very
large; actually, this happens with so huge a probability
that the variance of the force is even divergent. It will be
shown here that very large fluctuations of the force on a
test particle occur also in the case of galaxies. However,

(a)E-mail: carati@mat.unimi.it

while in the case of stars this is due to the occurrence
of close encounters, in the case of galaxies the largeness
of the fluctuations is instead due to the gravitational
contribution of the far galaxies, when one takes into
account both the retarded character of their action and
the correlated nature of the positions of the galaxies.
A probabilistic approach in a cosmological context, with

galaxies described as point particles, whose positions are
dealt with as random variables presenting correlations, is
a familiar one since a rather long time; see for example
the book of Mandelbrot [2], the book [3] by Peebles and
the work [4] by Davis and Peebles. Particular emphasis
on the possible fractal nature of matter distribution was
given, in addition to Mandelbrot, by several authors. See
for example the reviews [5] by Sylos Labini et al., [6]
by Coleman and Pietronero and [7] by Combes, and the
works [8] by Ruffini et al., [9] and [10] by Gabrielli et al.
and finally the work [11] by Joyce et al. Now, in all such
papers the nonrelativistic approximation for gravitation
was used, and retardation was altogether neglected, so
that one is actually dealing with purely static Newtonian
gravitational forces.
The main original contribution of the present paper

consists in showing that, if retardation is taken into
account (together with Hubble’s law and the correlated
nature of the positions of the galaxies), then the gravita-
tional action of far away matter enters the game and may,
in some cases, be the dominant one.
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This will be shown by considering an extremely simpli-
fied model of the Universe, with the Hubble constant hold
fixed at its present value H0. Two results will be obtained.
First we show that the influence of the far away galaxies
can be described as corresponding to the existence of an
effective density which is about five times larger than the
present barionic one, i.e., about equal to the usually esti-
mated density of dark matter. Then, we look at the force
on a test particle. We show that, if the correlated nature
of the positions of the galaxies is taken into account, the
force (per unit mass) can be estimated as given by 0.2 cH0
(c being the speed of light), which is about the value of the
acceleration at which the influence of dark matter starts to
be felt. Such results thus appear to indicate that far away
matter may produce gravitational effects comparable to
those usually attributed to local dark matter.
We finally give a preliminary discussion of the problem

whether such an estimate of the gravitational action of
far away matter may account, through the virial theorem,
for the observed velocity dispersion in clusters of galaxies.
We show that this is possible, provided the gravitational
force of far away matter has a suitable property concerning
its dependence on position. Namely, the force should not
be smooth, and its values at two separated points should
rather be uncorrelated. We point out how the extremely
simplified model here considered may not suffice to settle
the question whether such a decorrelation property should
hold, because the answer may require the introduction
of a more realistic model, in which the time variation
of Hubble’s constant is taken into account. We leave the
discussion of this interesting point for future work, and in
the present paper we limit ourselves to exhibit, through
the simplest conceivable model, how relevant the role of
far away matter may be for cosmology, if retardation of the
forces (in addition to the correlated nature of the positions
of the galaxies) is taken into account.

Definition of the model. – In order to fully take
the discrete character of matter into account, one should
in principle deal with an N -body problem, in which each
particle is coupled to the gravitational field through the
Einstein equation having all the other particles as sources.
This is, however, a formidable task. So we introduce first of
all the approximation in which one looks at the motion of
a test particle, when the motion of the sources is assigned,
as given by observational cosmology. This will naturally
lead to a compatibility problem, because the test particle
too will have to move according to the same law. It will be
shown how this compatibility condition is solved through
the introduction of a suitable effective density.
As the simplest model for the motion of the sources,

we take a velocity field which corresponds to Hubble’s
law, i.e., we neglect altogether the peculiar velocities
(a further comment on this point will be given later).
Taking a locally Minkowskian coordinate system centered
about an arbitrary point, a particle with position vector
q will then have a velocity

q̇=H0 q. (1)

For the sake of simplicity of the model, the Hubble
constant H0 will be assumed to be independent of time.
On this point we will come back later on. It is easily
established that the chart has a local Hubble horizon
R0 = c/H0, where the galaxies have the speed of light.
Notice furthermore that the form (1) of Hubble’s law is the
one appropriate to our choice of Minkowskian coordinates.
For example, one could choose, as Davis and Peebles
(but not Joyce et al.) do, coordinates “expanding with the
background cosmological model”, with respect to which the
galaxies have zero velocity (the peculiar velocities having
been neglected); see formula (1), p. 426, of [4]. Our choice
of coordinates is perhaps more convenient in the present
case, but obviously, just by definition, the results do not
depend on the choice of the coordinates at all.
So we investigate the gravitational action due to a

system of N galaxies whose motions qj(t), j = 1, . . . , N ,
are assigned. The energy-momentum tensor Tµν then is

Tµν =

N∑
j=1

1√
g

Mj

γj
δ(x− qj)q̇µj q̇νj , (2)

where Mj , and γj are the mass and the Lorentz factor of
the j-th particle, g is the determinant of the metric tensor
(which is considered as an unknown of the problem),
δ the Dirac delta function, and the dot denotes derivative
with respect to proper time along the worldline of the
source. The velocities of the galaxies are assumed to
satisfy Hubble’s law (1), while their position vectors
qj are considered as random variables, whose statistical
properties will be discussed later.

The perturbation approach. – The study of
the solutions of Einstein’s equations with the energy-
momentum tensor (2) as a source still is a formidable task,
and so we limit ourselves to a perturbation approach, in
which the energy-momentum tensor Tµν (2) is considered
as a perturbation of the vacuum. Following the standard
procedure (see [12] or [13]), we have to determine a
zeroth-order solution (the vacuum solution), and solve
the Einstein equations, linearized about it. The simplest
consistent zeroth-order solution is the flat metric, because
it will be shown that, coherently, the perturbation turns
out to be small (at least if the free parameters are
chosen in accordance with the observations). We did not
investigate whether there do exist other ansatzs for the
vacuum which give better results. Some further comments
on the perturbation procedure will be given later.
Thus the metric tensor gµν is written as a pertur-

bation of the Minkowskian background ηµν , namely, as
gµν = ηµν +hµν , and it is well known that in the linear
approximation the perturbation hµν has to satisfy essen-
tially the wave equation with Tµν as a source. More
precisely, one gets

�
[
hµν − 1

2
ηµνh

]
=−16πG

c4
Tµν , (3)
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where G is the gravitational constant, h the trace of hµν ,
and �= (1/c2)∂2t −∆2. The solutions are the well-known
retarded potentials

hµν =
−2G
c4

N∑
j=1

Mj

γj

2q̇
(j)
µ q̇

(j)
ν − c2ηµν
|x− qj |

∣∣∣∣∣
t=tret

(4)

(with q(j) ≡ qj).
The mean metric, the compatibility condition
and the effective density. – In order to implement
in a suitable sense the compatibility condition previously
mentioned, we now make reference to the mean metric,
which is obtained by averaging over the position vectors
of the galaxies, considered as random variables. For a
spherically symmetric probability distribution it is imme-
diately seen that the mean of each of the off-diagonal
terms vanishes, and that the means of the spatial diag-
onal components are all equal. Denoting the mean by 〈 . 〉,
the mean metric at the origin is then

ds2 = 〈gµν〉dxµdxν = (1−α− 3β) c2dt2− (1+α+β)dl2,
where dl2 =dx2+dy2+dz2 and

α=
2G

c2

〈∑
j

Mj

|qj |

〉
, β � 4GH

2
0

3c4

〈∑
j

Mj |qj |
〉
. (5)

This actually is a spatially flat Friedmann-Robertson-
Walker metric. We can now formulate the compatibility
condition as the requirement that the expansion rate
corresponding to such a metric coincides with the one (H0)
that was assumed for the sources. The condition then takes
the form

1

2

d

dt
log
1+α+β

1−α− 3β =H0. (6)

The sums (5) defining the coefficients α and β might be
estimated through integrals involving a suitable effective
matter density. There arises, however, the problem that,
due to the retarded character of the time entering the
expressions for α and β, the galaxies lying near the border
of the chart are to be taken at times near that of the
big bang, at which the density diverges. This, by the way,
shows that only the galaxies at the border are the relevant
ones. This very fact, however, also allows one to solve the
problem just mentioned, because one can then introduce
an effective density ρeff having the property that both
relations〈∑ Mj

|qj |
〉
� 4πρeffR0

2

2
,

〈∑
Mj |qj |

〉
� 4πρeffR0

4

4

hold, with the same effective density. This gives

α� 4πGρeffR02/c2, β < (2/3)α. (7)

Using Ṙ0 = c, one then gets

α̇� 8πG
c2
ρeff R0c, β̇ � 2

3
α̇.

With these expressions for α̇ and β̇, the consistency
condition (6) then becomes an algebraic one, which gives
for ρeff the value

ρeff � 1
4

3H20
8πG

� 5ρ0, (8)

where ρ0 =Ω0 (3H
2
0 )/(8πG), with Ω0 � 0.05, is the

observed barionic density at the present time. Notice,
by the way, that the perturbation procedure appears
to be qualitatively consistent, because the first-order
perturbation turns out to be small, of the order of one
tenth the unperturbed one.
This is the first result of the present paper. Due

to the retarded nature of the potentials, it turns out
that the far away galaxies are the ones that give the
dominant contribution to the mean metric of the Universe.
Moreover, the consistency condition that the expansion
rate obtained with such a mean metric be equal to H0,
determines the value of a corresponding effective density,
which is about five times the observed barionic one, i.e.,
about equal to the estimated density of the dark matter.

Form of the force due to the far away galaxies.
– So far for what concerns the mean metric. We now
come to the problem of estimating the effects of the
fluctuations on the dynamics of a test particle. The force
per unit mass on a test particle is obtained in the familiar
way through the equation for the geodesics. Notice that
the Hubble relation (1) has here an essential impact.
Indeed, the force contains both a term decreasing as
1/r2, which is proportional to the velocity of the source,
and a term decreasing as 1/r, which is proportional
to the acceleration of the source. Thus, estimating the
acceleration too through Hubble’s law, the latter term
actually turns out not to depend on distance at all, and
thus it is again the far away matter that is found to give
the dominant contribution. Compare this with the way in
which Mach’s principle was dealt with in [12] (see p. 102).
There, lacking Hubble’s law, the velocities of the sources
were neglected. Thus, only the Newtonian, fast decaying,
potential was considered, and so only the near matter, and
not the far one, appeared to play a role.
So we address our attention to the dominant term of

the gravitational force per unit mass, namely, the one
proportional to the acceleration of the source. Such a term,
which we denote by f , has, at the origin, the form

f =
4GH20 M

c2
u, u(N) =

N∑
j=1

qj

|qj | (9)

with the positions qj of the N galaxies evaluated at
corresponding retarded times. Here, the masses of the
galaxies were all put equal to a common valueM , and the
Lorentz factors γj were put equal to 1, for the reasons to
be illustrated later. So, apart from a multiplicative factor,
such a force just reduces to the sum of the unit vectors
pointing to each of the galaxies at the corresponding
retarded time. Actually, our attention was addressed to
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the component of such a force f along a given direction.
Such a component will be simply denoted by f , and the
corresponding component of u by u.

Estimate of the force. Role of the probabilistic
assumptions for the distribution of galaxies. –
Having determined the quantity f of interest (or equiva-
lently u), we now come to the problem of how to describe
the distribution of the galaxies. It is immediately seen that
f exactly vanishes (at any point) if the matter is described
as a continuous medium with a spherically symmetric
density. From the probabilistic point of view considered
here, such a result (the vanishing of f for a spherically
symmetric matter density) now reads as the vanishing of
the mean value of f for a spherically symmetric probabil-
ity density of the position of a galaxy.
We thus come to an estimate of the variance of the

force f (or of u). It will be seen that the result depends
on the further assumptions one introduces concerning
the spatial distribution of the galaxies. Assume first
that the positions qj of the N galaxies are independent
random variables, uniformly distributed with respect to
the Lebesgue measure. Then the sum defining u is found
to grow as

√
N , just in virtue of the central limit theorem.

For what concerns the estimate of the force on a test
particle, one easily sees that with the present assumption
it is completely negligible, just because the considered sum
behaves as

√
N rather than as N (see later).

So we modify such an assumption and, following all
the previously mentioned authors, we consider the case
in which the position vectors of the galaxies present a
correlation, i.e., they are no more independently distrib-
uted. Thus, the sum defining u is no more constrained to
grow as

√
N , and can have a faster growth. Just for the

sake of concreteness, we fix our model by requiring that
the probability density corresponds to a fractal of dimen-
sion 2. In such a way, however, the analytical computation
of the probability distribution of the force becomes a quite
nontrivial task with respect to the Poissonian case consid-
ered by Chandrasekhar and von Neumann, and also with
respect to the fractal, but purely Newtonian, case consid-
ered by Gabrielli et al. in the papers [9] and [10]. So we are
forced, at least provisionally, to investigate the problem by
numerical methods.
We proceeded as follows. In order to estimate the sum

defining u, the positions of the N galaxies were extracted
(with the method described in [2]) in such a way that the
mass distribution has fractal dimension 2. We then studied
the dependence of u on the number N of galaxies, which
was made to vary in the range 1000�N � 512000, the
density being kept constant. This means that the positions
of the N points were taken to lie inside a cutoff sphere
whose volume was made to increase as N . For the values
of N investigated, the corresponding radius turns out to
be so small with respect to the present horizon, that the
Lorentz factors γ could altogether be put equal to 1 (as
was previously assumed), and more in general the special
relativistic character of our model was actually justified.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 100  1000  10000  100000  1e+06

u fo ecnaira
V

Number of Galaxies

Fig. 1: The variance σ2u of u vs. the number N of galaxies in
log-log scale. The dashed line is the curve σ2u = 0.2 N

2.

The mean of u turns out to practically vanish for all N ,
while its variance σ2u is found to grow as N

2 (actually, as
0.2N2), rather than as N , as occurs in the uniform case.
This is shown in fig. 1. The standard deviation σf is thus
proportional to N , being given by

σf �
√
0.2
4GH20
c2
MN =

√
0.2
4G

R20
MN. (10)

We now take such a result, which was obtained for
extremely small values of N , and extrapolate it up to the
present horizon R0 = c/H0, i.e., we insert in formula (10)
the actual value of N , so that the quantity MN can be
identified with the total visible mass of the Universe. The
latter can be written as MN = (4/3)πρeffR

3
0, in terms of

the effective density ρeff previously discussed. This gives
σf � 0.2 cH0.
On the other hand, if a random variable f has zero mean

and a finite variance σ2f , with great probability its modulus
will take on values very near to its standard deviation σf .
In such a sense we may say to have found

| f |� 0.2 cH0, (11)

which constitutes the second result of the present work.
Namely, in our oversimplified model the force per unit
mass, i.e., the acceleration, exerted by the far matter
on a test particle, is found to have a value of the order
of cH0, which is the one that is met in most cases
in which the presence of a dark matter is advocated.
Notice that the assumption of a uniform, rather than
correlated, distribution of matter would lead instead
to |f |� cH0/

√
N , i.e., essentially to f � 0. Namely, as

previously mentioned, without the correlation hypothesis
for the positions of the galaxies, the usual procedure
of neglecting at all the gravitational contribution of the
far away matter, would be justified. We expect that the
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coefficient
√
0.2 in (10) may depend on the degree of

correlation chosen for the positions of the galaxies. This
point will be investigated elsewhere.
Notice that this force, acting on each test particle, also

acts on each galaxy itself, thus producing an acceleration
which should be added to the one given by Hubble’s law.
On the other hand, such an acceleration was neglected in
our model, because the peculiar velocities were assumed
to vanish, so that we have here a consistency problem.
In this connection we notice that this acceleration is
small with respect the Hubble acceleration H0c of the
far away galaxies (which are the relevant ones), so that
our procedure seems to be consistent. A more accurate
discussion of this point is left for future work.

Possible application to the virial of the forces
for a cluster of galaxies. – We now address the
problem whether the previous result may be applied to
estimating the virial of the external forces for a cluster of
galaxies. We have in mind the work of Zwicky [14] for the
Coma cluster, in which the contribution of the internal
matter was found to be negligible, that of the external
galaxies was not even mentioned (perhaps, in the spirit
of the continuum approximation), and the presence of a
dark matter was proposed. Let us recall that, according
to the virial theorem, for a confined system constituted
by n particles (think of a cluster of galaxies) one has

σ2v =−V /n. Here, σ2v = (1/n)
∑
i v
2
i is the variance of

the velocity distribution of the particles (the galaxies of
the cluster), whereas V =∑i fi ·xi is called the virial
of the forces (per unit mass), xi denoting the position
vector of the i-th internal particle with respect to the
center of mass of the cluster, while the overline denotes
time average. It was shown by Zwicky that the contri-
bution of the internal forces is negligible, so that in
estimating the virial we can just consider the force due
to the external galaxies.
It is well known that the virial of the external forces

(per unit mass) equals the virial of the tidal force (per unit
mass) f − f∗, where f∗ is the force (per unit mass) at the
center of mass, because the contribution of f∗ vanishes.
The key point now is that the contribution of the tidal
forces depends on the smoothness properties of the field
of force f . Indeed it turns out that, if the field is smooth,
so that the tidal force can be estimated through a Taylor
expansion, then one finds V /n�H20L2, where L is the
linear dimension of the cluster. For the Coma cluster this
contribution turns out to be negligible.
If one instead assumes that the forces at different points

be uncorrelated, then it turns out that the contribution
may be of the correct order of magnitude.
Indeed this assumption has two deep consequences. The

first one is that it makes conceivable that locally, in some
regions, the random field of force may form patterns of
a central-like type, which are attractive towards a center,
with a nonvanishing force at the center. By the way, this is
equivalent to the fact that locally, in such special regions,
the external far away matter produces a pressure. The

second consequence is that in such a case the variance of
the tidal force f − f∗ just equals √2 the variance of the
force f , the estimate of which was given in formula (11).
So, having assumed that the tidal force be of central-

like type, the terms of the sum
∑n
i=1 (fi−f∗) ·xi can

be estimated as (fi−f∗) ·xi �−
√
2 |f | |xi|, with f given

by (11), and with |xi| �L/4, where L is the diameter of
the cluster. So, for the velocity variance one gets

σ2v �
√
2 0.05 cH0L� 0.07 cH0L. (12)

In, the case of Coma one thus finds a value
� 8 · 105 km2/s2, which is very near to the value
5 · 105 km2/s2 reported by Zwicky.
The prediction that the velocity variance depends

linearly on L, according to (12), may be of interest, and
apparently is in agreement with the observations (see [15],
fig. 2, p. 539, and [7]). Notice that, with the parameters
entering the problem, the square of a velocity can be
formed only as c2, or as cH0L or as (H0L)

2. But the
first term is by far too large, the last term (as previously
pointed out) by far too small, while the term linear in L
is indeed about of the correct order of magnitude. Thus,
the previous considerations appear to indicate that the
decorrelation assumption for the forces at different points
is necessary in order that the observed velocity dispersion
in a cluster may be ascribed to the gravitational action of
the far away galaxies.
We now briefly address the question of understanding

which mechanisms might be reponsible for such a decorre-
lation. We have in mind two mechanisms. The first one is
suggested by the analysis made in the paper [11] of Joyce
et al., in which the Newtonian contribution to the tidal
force is estimated, albeit in a different context. Indeed in
such a paper it is shown (see p. 418) that the Newtonian
contribution to the tidal force is finite, whereas the purely
Newtonian nontidal contribution would be divergent, at
least for certain values of the fractal dimension. On the
other hand, the latter quantity is just of the same order
of magnitude of the tidal force corresponding to our far
fields, and so such a result suggests that the tidal force due
to the far fields may be divergent. This, in turn, may be
considered as an indication of decorrelation. The second
mechanism has instead a cosmological character, and is
related, on the one hand, to the fact that the cosmological
horizons relative to different galaxies do not coincide and,
on the other hand, to the fact that the main contribu-
tion to the force comes from the matter near the horizon.
Remarking, in addition, that the distributions of matter
about two different horizons should be considered as inde-
pendent ones (the horizons being noncausally connected),
one is led to conceive that also the corresponding forces
might be independent.
A consistent discussion of this point would require the

consideration of a more realistic model, in which the time
dependence of Hubble’s constant be taken into account.
So we leave a discussion of this point for future work.
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A comment on the perturbation approach. – In
the present paper we have chosen a perturbation approach
in which the zeroth-order solution is the flat metric, and
consistently the first-order correction was found to be
small with respect to the unperturbed one.
One might imagine that a better approximation

be obtained if the mean metric, i.e., the Friedmann-
Robertson-Walker one, is taken directly as zeroth-order
solution. One easily sees, however, that such an approxi-
mation scheme meets with two difficulties. The first one is
that in such a case the source entering the equation for the
first-order solution is of the same order as the zeroth-order
source. Indeed, the source is proportional to the quantity

Tµν −〈Tµν〉

which is not small, as its modulus is almost everywhere
equal to that of 〈Tµν〉. A more serious difficulty is the fact
that the first-order perturbation has to satisfy essentially
d’Alembert’s equation with the source just mentioned,
while such an equation cannot be solved by elementary
methods, and it is not even known whether it admits
bounded solutions at all. So, in the paper [4], Davis and
Peebles, who use such a perturbation procedure for the
analogous nonrelativistic case, have to introduce a suit-
able resummation procedure. Now it is not clear whether
a similar resummation procedure can be introduced also
in our relativistic case, and furthermore in our case a
discussion of the boundedness of the solution would be
required because, at variance with Davis and Peebles, we
are not restricting ourselves to the case of short distances.
Now, neither of the mentioned difficulties comes in with

our perturbation procedure. In addition, it seems to us
that the procedure of David and Peebles eventually is
equivalent to the nonrelativistic version of our procedure.
Indeed, their formula (12) is equivalent to our formula (3),
taken in the nonrelativistic approximation, while their
formula (14) just gives the contribution to the force due
to the near galaxies. This contribution occurs also in our
case, and does not appear explicitly in our formula (9),
only because in the latter we just retained the dominant
contribution due to the far away galaxies.
It is worth mentioning that a perturbation about

the FRW metric is performed also by Joyce et al. in the
paper [11]. But in their case they take into account the
fact that the zeroth-order solution is due to the radiation
energy density, so that the energy-momentum tensor due
to matter is not a perturbation of the vacuum. Thus they
do not meet with the previously mentioned problems.

Conclusions. – In conclusion, we have studied the
retarded gravitational action of the far away galaxies.
Such an action vanishes if the matter in the Universe is
described in terms of a continuous spherically symmetric
continuum. We have pointed out that such an action is
instead quite relevant if the discrete character of matter, as
constituted of galaxies with correlated positions, is taken
into account. Some gravitational effects were estimated,

and were found to have the same order of magnitude as
the corresponding local ones of dark matter.
It is sometimes stated [16] that the fractal picture of

the Universe may be incompatible with the framework of
the standard cosmological theories, and in the paper [11]
by Joyce et al. a solution was proposed, based on the idea
that the contribution of matter to Einstein’s equations
should be considered as a perturbation to the contribution
of radiation. Perhaps the present approach, in which a
perturbation to the vacuum is performed, and the FRW
metric is obtained in the mean (even if radiation is
altogether neglected), may be considered as providing an
alternative complementary solution to the problem.
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