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Abstract – A generalized Peierls substitution which takes into account a Berry phase term must
be considered for the semiclassical treatment of electrons in a magnetic field. This substitution
turns out to be an essential element for the correct determination of the semiclassical equations of
motion as well as for the semiclassical Bohr-Sommerfeld quantization condition for energy levels.
A general expression for the cross-sectional area is derived and used as an illustration for the
calculation of energy levels of Bloch and Dirac electrons.
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Semiclassical approaches are very important in many
area of physics for the study of the short-wavelength
behavior of quantum systems, including Bloch electrons in
crystals or Dirac particles in external fields. An essential
ingredient of these approaches is the Bohr-Sommerfeld
quantization condition, whose generalization from scalar
to vector wave fields has revealed new gauge structures
related to Berry’s phases [1]. This paper presents a
detailed study of the semiclassical quantization for a
single quantum particle in a magnetic field, exemplified
by electrons in a crystal and by Dirac electrons. This
unified description of a particle in a magnetic field is
based on a method of semiclassical diagonalization for
an arbitrary matrix-valued Hamiltonian developed previ-
ously [2] (for a generalization to higher order in � see [3]).
This method results in an effective diagonal Hamiltonian
in terms of gauge-covariant but noncanonical, actually
noncommutative, coordinates. It will be shown that a
generalized Berry’s phase dependent Peierls substitution
is necessary for the establishment of the full equations of
motion including Berry’s phase terms. This substitution
turns out to be also an essential ingredient for the
Bohr-Sommerfeld quantization condition of an electron in
a magnetic field. Indeed, when reformulated in terms of
the generalized Peierls substitution, this condition leads

(a)E-mail: mohrbach@univ-metz.fr

to a modification of the semiclassical quantization rules
as well as to a generalization of the cross-sectional area
derived independently by Roth [4] and Fal’kovskii [5] in
the context of Bloch electrons.

Semiclassical diagonalization. – Let us consider
a system of a quantum particle in a uniform external

magnetic field B=∇× Ã described by an arbitrary-
matrix–valued Hamiltonian H (Π,R), where Π=P+

eÃ(R) is the covariant momentum and e > 0 is the electric
charge. We assume that the system can be separated into
two contributions such that H (Π,R) =Hm (Π)+ϕ(R),
where Hm (Π) is the pure magnetic part and ϕ(R) is
the external electric potential. In this paper we will be
mainly interested in the magnetic contribution. The exact
diagonalization of this matrix-valued operator through an
unitary matrix U (Π) is in general not known, and in
this paper we apply a recursive diagonalization procedure
developed previously by two of the authors. This proce-
dure is based on a series expansion in the Planck constant
of the required diagonal Hamiltonian [2,3]. By diagonal
Hamiltonian it is meant a matrix representation with
block-diagonal matrix elements associated with energy
band subspaces. The method is based on the knowledge
of the zeroth-order diagonal representation ε=U0H0U

+
0

where U0 is the zeroth-order transformation matrix, H0
the Hamiltonian Hm, in which the components Π

i are
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considered formally as classical, and therefore commuting
operators. Quantum corrections are then re-introduced to
yield the expression for the diagonal Hamiltonian Hd =
U (Π)HU+ (Π) which, if we limit ourselves to the semi-
classical order (the semiclassical condition being that the
radius of curvature of the orbit is large in comparison with
wavelength), has diagonal operator elements labelled by
the energy index n which reads

(Hd)nn = εn (πn)+ϕ(rn)− e�Mn ·B. (1)

Here εn (π) is the zeroth-order matrix element of ε (it can
itself be a matrix as for a Dirac Hamiltonian, in which
case a block-diagonalization is considered) in which clas-
sical variables are now replaced by the quantum oper-
ators πn =Π+ �AΠ and rn =R+ �AR, where we have
defined the Berry connections as being the projection on
the n-th energy band AR/Π =Pn

[AR/Π] of the matri-
ces �AR =URU+ and �AΠ =UΠU+ (where R and Π
implicitly act only on U+). The matrix �AR can also
be written �AR = i�U∇ΠU+ as a consequence of the
commutation relation

[
Ri,Πj

]
= i�δij . The other matrix

AΠ can be expressed in terms of AR. Indeed, we have
UΠU+ =U∇ΠiU+[Π,Πi] =− eAR×B owing to the fact[
Πi,Πj

]
=−ie�εijkBk. From this, we deduce, after projec-

tion on the n-th energy band the following Berry connec-
tion, AΠ =−eAR×B.
The derivation of the in-band Hamiltonian eq. (1),

shows that instead of the Peierls substitution [6], which
amounts to replacing the canonical momentum P by the
covariant one Π in the energy band εn, the presence of
non-zero Berry connections leads to a generalization of the
Peierls substitution via a generalized covariant momentum

πn =Π− e�A×B, (2)

where from now we use the notation A≡AR and A≡AR.
The last term in eq. (1) is the coupling between the
uniform magnetic field and the magnetic moment which
is a vector that reads Mn (π) =

i
2�2Pn ([ε,A]×A) =

1
2�Pn(Ȧ×A) [2,3] (it can be a matrix-valued vector

if the n-th energy band is degenerate). As Ȧ has only
off-diagonal matrix elements related to the band-to-
band matrix elements of A by the relation Ȧnm =
i
�
(εn− εm)Anm, we can write the matrix elements of the
components of Mn as

(Mx)nn =
i

2

∑
m �=n

(Ȧy)nm(Ȧz)mn
εn− εm , (3)

and similarly for the other components My and Mz by
circular permutation. This is the usual magnetic moment
as it is deduced in solid states physics books like [7], but it
is actually more general as we can see here. Later, we will
use this expression to compute the magnetic moment of a
Dirac electron. Note also that Ȧnm are the non-diagonal

elements of the velocity matrix (ṙ)nm and thus Mn can
be seen as an intrinsic angular momentum. Indeed we can
writeMn =

1
2�2 (ṙ× (r−R))nn, where it assumed that the

diagonal elements of ṙ are excluded (see also [8]).
The appearance of the Berry connection allows us to

define naturally non-Abelian (in general) Berry curvatures
Θij (π) = ∂πiAj − ∂πjAi+

[
A
i
, A

j

]
, where for simplicity

we omit now band indices. Position operators then satisfy
an unusual non-commutative algebra

[
ri, rj

]
= i�2Θij .

The generalized covariant momentum satisfy an
algebra

[
πi, πj

]
=−ie�εijkBk + ie2�2εipkεjqlΘpqBkBl

slightly corrected with respect to the usual one[
Πi,Πj

]
=−ie�εijkBk by a term of order �2B2 which

can in general be neglected. The Heisenberg relations
between the coordinate and the momentum

[
ri, πj

]
=

i�δij + ie�2εjlkΘilBk is also slightly changed but by a
term of order �2B. This contribution which is a direct
consequence of introducing the generalized covariant
momentum was overlooked in previous works, with the
exception of Bliokh’s work on the specific case of the Dirac
equation [9]. It turns out that this term is essential for
the determination of the genuine semiclassical equations
of motion which are

ṙ= ∂E/∂π− �π̇×Θ(π),
π̇=−eE− eṙ×B,

(4)

where we defined E ≡ ε− e�M ·B. As consequence of
the non-commutative algebra, the velocity equation is
corrected by an anomalous velocity term π̇×Θ, where the
vector Θ defined as Θi = εijkΘ

jk/2 is the Berry curvature
of an electronic state in the given n-th band, associated
to the electron motion in the n-th energy band. These
equations of motion, where first derived in solid-state
physics context in [8] (see also [10]) by considering the
evolution of the wave packet of a Bloch electron in an
electromagnetic field. In this picture, it is the mean over
wave packets of the operator r corresponding thus to
the wave packet center rc and the mean of π giving the
mean wave vector πc that are the variables in eq. (4).
The operatorial approach reveals first that the operator
π is in fact a generalized covariant momentum operator
which replaces the Peierls substitution, and second, that
the operatorial equations of motion are not restricted to
Bloch electrons in a magnetic field but are valid for any
physical system described by an arbitrary matrix-valued
Hamiltonian of the kind H (Π,R) =Hm (Π)+ϕ(R). In
particular they are also valid for Dirac particles moving in
an electromagnetic field.
Note that in solids, for crystals with simultaneous

time-reversal and spatial inversion symmetry, the Berry
curvature and the magnetic moment vanish identically
throughout the Brillouin zone [8]. This is the case for most
applications in solid-state physics, but there are situations
where these symmetries are not simultaneously present
as in GaAs, where inversion symmetry is broken, or in
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ferromagnets, which break time reversal symmetries. In
the same way, the presence of a strong magnetic field, the
magnetic Bloch bands corresponding to the unperturbated
system breaks the time inversion symmetries. In all these
cases the dynamical and transport properties must be
described by the full equations of motion given by eq. (4).
In the case of Dirac particles, both the Berry curvature and
the magnetic moment are non zero and the full equations
of motion have to be considered [2,9].

Bohr-Sommerfeld quantization. – Having shown
the necessity of the generalized Peierls substitution for the
determination of the semiclassical equations of motion,
we now investigate the relevance of this new concept at
the level of the semiclassical quantization of the energy
levels for an electron motion in an external uniform
magnetic field only (ϕ= 0), so that eq. (4) becomes ṙ=
D
(
∂E
∂π

)
and π̇=−eD ( ∂E

∂π
×B) with D−1 = 1− e�BΘ.

For convenience, B is chosen to point in the z-direction
B=Bk. Consequently the orbits satisfies the conditions
E = const and πz = const. The semiclassical quantization
of energy levels can be done according to the Bohr-
Sommerfeld quantization rule∮

P⊥dR⊥ = 2π� (n+1/2) , (5)

where P⊥ is the canonical momentum in the plane perpen-
dicular to the axis πz = const. The integration is taken over
a period of the motion and n is a large integer. Now, it
turns out to be convenient to choose the gauge Ãy =BX,

Ãx = Ãz = 0. In this gauge, one has πz = Pz = const, and
the usual covariant momentum Πy = Py + eBX. As BX =
B(x− �Ax) the generalized covariant momentum defined
as πy =Πy + e�BAx becomes

πy = Py + eBx, (6)

which is formally the same relation as the one between
the canonical variables, but now relating the new
covariant generalized dynamical operators. This rela-
tion with the help of the equations of motion gives
Ṗy = π̇y − eBẋ= 0, thus Py is a constant of motion so
that

∮
PydY = Py

∮
dY = 0 and eq. (5) becomes simply∮

PxdX = 2π� (n+1/2). Now using the definition of
the generalized momentum Px = πx+ e�AyB and the
differential of the canonical position dX =dx− �dAx =
dπy
eB
− �dAx, the Bohr-Sommerfeld condition eq. (5)

becomes∮
πxdπy = 2π�eB

(
n+
1

2
− 1
2π

∮
A⊥dπ⊥

)
, (7)

where the integral is now taken along a closed trajectory
Γ in the π space and 1

2π

∮
A⊥dπ⊥ = φB is the Berry phase

for the orbit Γ. It is interesting to note that in terms

of the usual covariant momentum (Peierls substitution)
we have instead of eq. (7) the condition

∮
ΠxdΠy =

2π�eB (n+1/2). The integration in eq. (7) defines the
cross-sectional area S0(ε, πz) of the orbit Γ which is the
intersection of the constant energy surface ε(π) = const
and the plane πz = const. Therefore the condition eq. (7)
implicitly determines the energy levels εn(πz). Comput-
ing now the cross-sectional area S0(E , πz) = S0(ε−
e�MzB, πz)≈ S0(ε, πz)+dS, with dS =

∮
dκdπ⊥ the area

of the annulus between the energy surface ε= const and
the surface ε+dε with dε=−e�MzB, and where dκ=√
dπ2x+dπ

2
y is an elementary length of the π orbit. Then,

as dS can be written dS =
∮

dεdκ
|∂ε/∂π⊥| =−e�B

∮
Mzdκ
|∂ε/∂π⊥| ,

where the integral is taken over the orbit Γ, one has
finally

S0(E , πz) = 2π�eB
(
n+
1

2
−φB − 1

2π

∮
Mz (π) dκ

|∂ε/∂π⊥|
)
.

(8)

It is common to write S0(E , πz) = 2π�eB (n+ γ) defining
thus the coefficient γ− 12 =−φB − 1

2π

∮
Mzdκ
|∂ε/∂π⊥| . This

coefficient can also be written in a different form

γ− 1
2
=− 1
2π

∮
[ṽ×A+M]z dκ
|∂ε/∂π⊥| (9)

with ṽ≡∂ε/∂π. Equation (9) is a generalization of a
previous result found by Roth [4] and Fal’kovskii [5],
in the specific context of Bloch electrons in a magnetic
field. The connection with Berry’s phase was seen later
by Mikitik and Sharlai [11]. In both [4] and [11], the term

[ṽ×A+M] was written as 12Pn
[(
Π
m
+v
)×A], where

v=Π
m
+ �Ȧ is the velocity operator before projection on a

band, and Π=mṘ, a relation valid only for a Hamiltonian
whose kinetic energy is Π2/2m. Therefore eq. (8) is more
general and has a broader field of application, as it is a
general result which applies for any kind of single quantum
particle system in a magnetic field, including Bloch and
Dirac electrons. Importantly the derivation provided here
is new, and it turns out to be the result of the generalized
Peierls substitution in the Bohr-Sommerfeld condition.

Bloch electron. – In a crystal, the Berry gauge
A(k) is Abelian (a scalar operator), written in terms
of the periodic part of the Bloch wave |un(k)〉 as
A(k) = i〈un(k)|∂k|un(k)〉, where k is the generalized
covariant pseudo momentum (k=π/�). Application of
eq. (8) for electron trajectories in a crystal with time
reversal and spatial inversion symmetry, where it is
expected that, both Θ and M vanish in the Brillouin
zone, has been studied by Mikitik and Sharlai [11]. But
these authors also pointed out the fact that the Berry’s
phase is non-zero when the electron orbit surrounds
the band-contact line of a metal, actually φB =±1/2.
Consequently, γ = 0 in this case, instead of the previously
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supposed constant value γ = 1/2 which is commonly used
in describing oscillation effect in metals. As these authors
mentioned, measurements of γ can allows the detection
of band contact lines.
As a simple application of eq. (8) consider a crys-

tal with time reversal and spatial inversion symmetry,
and where the Fermi surface is an ellipsoid of revolu-
tion characterized by two effective masses, a transverse
m⊥ and a longitudinal ml one. The energy levels can
easily be deduced. Indeed E = �2

(
k2⊥
2m⊥
+
K2z
2ml

)
and the

cross-sectional area S0(E ,Kz) is a disc of radius square
k2⊥ = 2m⊥

(
E/�2− K2z

2ml

)
, so that the energy levels are

En = eB�m⊥
(
n+ 12

)
+
�
2K2z
2ml
, which actually coincide with the

exact ones because the energy levels of an harmonic oscil-
lator keep their form at large n.

Dirac electron. – Let us consider the Dirac Hamil-
tonian H =α ·Π+βm in the presence of an uniform
magnetic field, with α and β the usual (4× 4) Dirac
matrices. The semiclassical block-diagonalization followed
by a projection on, say, the positive energy subspace,
leads to the (2× 2)-matrix–valued energy operator E = ε−
e�M ·B, where ε=√π2+m2 (c= 1) and the magnetic
moment is given by M= σ

2ε − Lε , with L=π×A repre-
senting the intrinsic orbital angular momentum [2,9]. It
turns out that for Dirac, the magnetic moment can also
be expressed as M= εΘ, with the curvature vector given
by the matrix [2,9]

Θ (π) =− 1
2ε3

[
mσ+

(σ·π)π
ε+m

]
,

with σ the Pauli matrices. Berry’s connection is defined as
A= i 〈+,π| ∂π |+,π〉 where |+,π〉 is the two-components
spinor of the positive-energy subspace. Consider B point-
ing in the z-direction so that πz = Pz = const, with the
goal to compute the Landau energy levels (LEL) as an
application of eq. (8). As the cross-sectional area S0(ε, Pz)
is a disc of radius square π2⊥ = ε

2−m2−P 2z , the applica-
tion of eq. (8) consists in replacing ε by E in π2⊥, so that we
have S0(E , Pz) = π

(E2n−m2−P 2z ), which yields the semi-
classical quantized LEL through the relation

E2n−m2−P 2z = 2�eB
(
n+
1

2
−φB − 1

2π

∮
Mzdκ

|∂ε/∂π⊥|
)
.

Now from the Berry connection A= π×σ
2ε(ε+m) we deduce

Berry’s phase φB =− τ2 + τ
(
m
2ε +

P 2z
2ε(ε+m)

)
, where τ =±1

are the eigenvalues of the Pauli matrix σz. Berry’s phase
is the sum of a topological part − τ2 and a non-topological
τ
(
m
2ε +

P 2z
2ε(ε+m)

)
one. The contribution from the magnetic

moment yields 1
2π

∮
Mzdκ
|∂ε/∂π⊥| =−τ

(
m
2ε +

P 2z
2ε(ε+m)

)
a term

which exactly cancels the non-topological contribution of

φB, so that finally

En =
√
m2+2�Be

(
n+
1

2
+
τ

2

)
+P 2z .

It turns out in this example that the semiclassical energy
quantization coincides also with the exact result. It is
usually expected that for a massless Dirac particle Berry’s
phase takes the topological value φB =±1/2, as a conse-
quence of the band degeneracy at zero momentum [12].
This is not the case here because the magnetic field lifts
this degeneracy as Pz is not zero in, general. But it
turns out that the magnetic-moment contribution exactly
compensates for the non-topological Berry’s phase contri-
bution. This cancellation can be easily understood from
the expression, eq. (9), for the coefficient γ. Indeed
from the equality [ṽ×A+M]z =

[
π×A
ε

]
z
+ τ
2ε − Lzε = τ

2ε

we deduce the expected result γ = 12 +
τ
2 = 0 or 1.

For a two-dimensional Dirac system it is therefore
expected that the magnetic moment for massless particles
exactly vanishes, and that Berry’s phase takes the topo-
logical value φB =±1/2. The electron motion in graphene
is an interesting physical situation which illustrates this
assertion. Indeed, graphene is a two-dimensional carbon
crystalline honeycomb structure with inversion symme-
try so that M= 0. The hexagonal Brillouin zone has two
distinct and degenerate Dirac points or valleys (labelled by
τ ± 1) where the conduction and valence bands meet and
the electronic excitations behave like massless relativis-
tic fermions, so that φB =±1/2 and consequently En =
±
√
2�eB

(
n+ 12 +

τ
2

)
[13]. Therefore the ground state is

not degenerate as there is only one possibility to realize it
n= 0 and τ =−1. This result explains the peculiar quan-
tum Hall effect of graphene [14].

Summary. – We have shown that a generalized Peierls
substitution including a Berry phase term must be consid-
ered for a correct semiclassical treatment of electrons in a
magnetic field. This substitution is essential for the deter-
mination of the full semiclassical equations of motion, as
well as for the semiclassical Bohr-Sommerfeld quantiza-
tion condition for energy levels. Indeed, the substitution
in the Bohr-Sommerfeld condition leads to an expression
for the cross-sectional area which in some sort general-
izes the formula found by Roth and Fal’kovskii in the
context of Bloch electrons in a crystal. Application of this
formula to Dirac electrons shows the subtle cancellation
mechanism between the magnetic moment and the non-
topological part of Berry’s phase, which yields the Landau
energy levels.
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