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Abstract – In this paper we study the low-temperature kinetics of the electrons in the system
composed of a quantum dot connected to two leads by solving the equation of motion. The
decoherence and the relaxation of the system caused by the gate voltage noise and electron-
phonon scattering are investigated. In order to take account of the strong correlation of the
electrons in this system, the quasi-exact wave functions are calculated using an improved matrix
product states algorithm. This algorithm enables us to calculate the wave functions of the ground
state and the low-lying excited states with satisfied accuracy and thus enables us to study the
kinetics of the system more effectively. It is found that although both of these two mechanisms are
proportional to the electron number operator in the dot, the kinetics are quite different. The noise-
induced decoherence is much more effective than the energy relaxation, while the energy relaxation
and decoherence time are of the same order for the electron-phonon scattering. Moreover, the
noise-induced decoherence increases with the lowering of the dot level, but the relaxation and
decoherence due to the electron-phonon scattering decrease.

Copyright c© EPLA, 2009

Introduction. – In the past two decades there have
been many experimental and theoretical investigations
on the artificial strong interacting quantum system,
especially after the observation of the Kondo effect in
the quasi–one-dimensional (1D) system composed by
a semiconductor quantum dot (QD) connected to two
leads. The Kondo effect of this system produces a perfect
transparency with unitary conductance in the symmetric
configuration ε0 =−U/2, with ε0 and U being the QD
level and on-site Coulomb repulsion [1–5]. Most of the
studies focus on the static transport properties. In recent
years, the kinetics and time evolution of these systems also
attracted much attention [6–9], as the study of the kinet-
ics and time evolution enables one to attack the strong
correlated system from different perspectives. Different
methods have been employed to study the response of
the systems to the ac-modulated or step switching bias
and/or gate voltage [6,10–12]. Theoretically, the temporal
evolution of Kondo-like systems has been studied by
using noncrossing approximation [6,10,11], quantum
Monte Carlo simulation [13], time-dependent numerical
renormalization group [14], and time-dependent density
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matrix renormalization group (DMRG) methods [12].
However, only few studies have considered real dissipation
mechanisms, such as noise and the electron-acoustic (AC)
phonon interaction, which dominate the decoherence and
relaxation at low temperature [15].
In this paper, we study the time evolution of the QD

system under the influence of the gate noise and acoustic
phonon by solving the equation of motion. Since the
electrons in this kind of system are mutually correlated,
an improved version of the matrix product states (MPS)
algorithm [16–21] is employed to study the electron system
in order to keep the many-body effect of the system accu-
rate. The paper is organized as follows. In the second
section, we present the system Hamiltonian and the
equation of motion for the time evolution of the system in
the presence of the gate noise and electron-phonon inter-
action. In the third section we give a brief introduction
to the MPS algorithm and discuss how it can be further
improved to study the kinetics of the QD system. We show
the numerical results of the decoherence and relaxation
in the fourth section and summarize in the last section.

System model. – The system we study is composed
of a semiconductor QD connected to two leads. The
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Hamiltonian is written as

H =He+Hph+Hep. (1)

Here He and Hph are the Hamiltonian of the electron
and of the phonon, Hep describes the electron-phonon
interaction. The electron Hamiltonian of a N -site system
is

He =
∑
iσ

εiniσ +Un0↑n0↓+
∑
iσ

tiC
†
iσCi+1σ +h.c., (2)

with C†iσ (Ciσ) being the creation (annihilation) operator
of the electron with spin σ(=↑↓) at the site i. The sites
with index i= 1, 2, · · ·, [N/2](−[N/2], · · ·,−2,−1) are the
sites on the right (left) lead, while the site with i= 0 is for
the QD. In this paper, the on-site energy of leads is set to
be zero and ti ≡ t for i= · · ·,−3,−2, 1, 2, · · · . U describes
the Coulomb repulsion in the QD. The QD level ε0 can
be controlled by the gate voltage and is subjected to the
influence of the noise. For the phonon-related part, we
only consider the electron interaction with the background
longitudinal AC phonon via deformation potential. The
phonon Hamiltonian and the electron-phonon scattering
are

Hph =
∑
qλ

ωqb
†
qbq (3)

and
Hep =

∑
q

∑
σ

n0σMq(bq + b
†
−q), (4)

respectively. b†q (bq) is the creation (annihilation) operator
of the longitudinal AC phonon with wave vector q,
whose frequency is ωq = vslq with vsl standing for the
longitudinal sound velocity. Mq ∝√q〈Ψ0|eiq·r|Ψ0〉 is the
corresponding coupling matrix. Here Ψ0 is the electron
wave function in the dot. It is chosen to have the Gaussian
form exp(−r2/2a2) for simplicity, with a denoting the
diameter of the QD.
The kinetics of the system is studied by the temporal

evolution of the density matrix ρ(τ), whose diagonal
elements ρn,n(τ) and off-diagonal ones ρn,m(τ) stand for
the population of the |n〉 state and the coherence between
|n〉 and |m〉 states at time τ , respectively. Here |n〉 and
|m〉 are the eigen-states of the electron Hamiltonian free
from the gate noise and electron-phonon interaction. Using
the Markovian approximation and secular approximation,
one can write down the equation of motion for the density
matrix [22]:

∂ρ(τ)

∂τ
=−i[He, ρ]− i[HLS , ρ(τ)]−

∑
ε

Γ(ε)
[
n0(ε)

×n†0(ε)ρ(τ)+ ρ(τ)n0(ε)n†0(ε)− 2n†0(ε)ρ(τ)n0(ε)
]
. (5)

Here HLS =
∑
ε∆(ε)n0(ε)n

†
0(ε) is the energy shifting due

to the electron-phonon interaction. ∆(ε) and Γ(ε) are the
real and imaginary parts of the following formula:

∆(ε)+ iΓ(ε) =
∑
q

|Mq|2
∫ ∞
0

dτeiετD(q, τ), (6)

with D(q, τ) being the phonon Green function.
n0(ε) =

∑
n,m δε,En−Em |n〉〈n|n0|m〉〈m|. For the strong

electron-optical phonon interaction, HLS plays an impor-
tant role in the system properties [23]. However, for the
weak electron-AC phonon interaction we consider in this
paper, it only slightly renormalizes the QD level and the
Coulomb interaction, which is hard to detect experi-
mentally. Therefore this shifting is simply omitted in
this paper. For the electron-AC phonon interaction via
deformation potential Γ(ε) takes the following form:

Γ(ε) =∆p|ε|3[(1+nB(ε))θ(ε)+nB(−ε)θ(−ε)] , (7)

where nB(ε) = 1/(e
ε/T − 1) is the Bose function at

temperature T, and θ(ε) is the Heaviside step function.
∆p depends on the material- and structure-dependent
parameter as well as on the electron-phonon coupling.

Numerical scheme. – To solve the equation of
motion, one needs the wave function of the eigen-states of
the electron system to obtain the matrix elements of the
density matrix and n0. Since the electrons governed by the
Hamiltonian (eq. (2)) form a mutually correlated system,
it is important to take the correlation into account in the
study of the kinetics at low temperature. Here we use an
improved MPS algorithm to obtain the many-body wave
functions so that the strong correlation of the electron
system can be automatically taken into account.
For the 1D ground-state problem, MPS is known to

be equivalent to DMRG [16,17,21]. DMRG was first
proposed to study the ground and low-lying excited
states of quantum systems [24–26], and later was
further extended to the simulation of the time evolution,
calculation of excitation spectra and finite-temperature
properties of quantum systems [21,27,28]. The success
of DMRG is eventually understood by its connection
to MPS [16,17,21]. In the MPS algorithm, the wave
function of a N -site lattice is represented by a group
of A-matrices whose dimension is usually much smaller
than the dimension of the Hilbert space

∑
s1···si−1
sisi+1···sL

Tr
{
As1 · · ·Asi−1AsiAsi+1 · · ·AsL}

×|s1 · · · si−1sisi+1 · · · sL〉, (8)

with si representing the local state index at the i -th
site. To start the calculation, an initial wave function is
given by other calculations or randomly generated. The
wave function is then gradually optimized by a process
called “sweep”: the wave function is optimized by only
minimizing the energy with regard to the local A-matrix
at one or two “center” sites while keeping other A-matrices
unchanged. One then moves the “center” site to the left or
right neighbor by targeting to the ground state [24,25] or
performing singular value decomposition [17]. The process
repeats until a desirable accuracy is achieved or the
accuracy cannot be further improved by more sweeps.
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In the traditional DMRG algorithm, if more than one
eigen-state are to be calculated, they should be targeted
simultaneously during the sweep process. This requires
larger A-matrix dimension and more computing resources.
The more eigen-states are required, the less accurate
they are for a fixed A-matrix dimension. Therefore, the
traditional DMRG algorithm is usually limited to the
calculation of the ground state and few low-lying excited
states. Here we propose an algorithm to improve the
calculation of the excited states by using MPS.
In our algorithm, instead of calculating all of the

required eigen-states simultaneously, they are calculated
step by step. We first calculate the ground state by
using the traditional DMRG method and obtain the
wave function in the normal MPS form like eq. (8). To
obtain the first excited state, we again generate an initial
wave function then gradually optimize it through sweep.
However, during the sweep, we first orthogonalize the
excited state and the ground state by performing Gramm-
Schmidt orthogonalization on the local A-matrix at the
center site, then we minimize the energy for the excited
state. In this way, we can obtain the wave function of the
first excited state in the normal MPS form when the sweep
converges. Since the wave function of the ground state is
in the normal MPS form, the sweep of the first excited
state does not change the ground state [29]. Similarly, to
calculate the higher excited states, we first perform the
orthogonalization of the wave function to all of the lower
states, then we optimize the energy during the sweep. By
repeating this process, we can get the excited states step
by step without sacrificing the accuracy of the lower states.
In our algorithm, the normal MPS form of the wave

functions is required to carry out the sweep of the excited
states. There are two major algorithms for the sweep: the
two-site sweep and the one-site sweep [25,26]. The two-
site sweep gives better eigen-energy since it uses a larger
Hilbert space and therefore it is more memory hungry
and CPU time consuming. Moreover, the wave function
obtained by the two-site sweep is no longer in the normal
MPS form. For example, if the center sites are i− 1 and
i, the corresponding matrices of the wave function are
· · ·, Asi−2 , Asi−1,si , Asi+1 , · · · . One has to break the matrix
Asi−1,si into the multiple of two matrices with larger
dimension to get the normal MPS form. The wave function
loses its optimality if these two matrices are truncated to
the original dimension. On the other hand, the one-site
sweep is cheaper to carry out. More importantly, the wave
function of the one-site sweep algorithm is always in MPS
form, therefore it keeps the optimality when the center
site moves. However, the one-site sweep can easily fall into
some local optimal points and usually fails to give satisfied
eigen-energy and wave function unless a good initial wave
function is given to start the sweep. Our solution to the
dilemma is to use the combination of two-site and one-
site sweep. That is, we first use the two-site sweep to
improve a randomly generated wave function and truncate
the improved wave function to the normal MPS form and
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Fig. 1: Relative error of the ground-state energy vs. sweep step
for the system with N = 17, and N↑ =N↓ = 8. The hopping
between the leads and the QD is 0.1t and the on-site interaction
is U = 6t. The filled dots are the results of the improved
algorithm; the open boxes are those of the single sweep with
a randomly generated initial wave function. The curves are
guides for the eyes.

use it as the initial wave function for the one-site sweep
algorithm. It is expected that the truncated wave function
would be a much better initial function even when the
initial two-site sweep is not converged.
In the following we first use this hybrid sweep algo-

rithm to study the ground state of the QD system to
demonstrate its feasibility. In fig. 1 the relative error of
the ground-state energy is plotted as a function of the
number of the sweep. In the calculation, we keep the most
relevant 256 states, and the “true” ground-state energy
Eg is obtained by the two-site sweep with 400 states
kept. In the calculation, the total site number, the spin-up
and -down electron number are N = 17, and N↑ =N↓ = 8,
respectively. The hopping between the QD and the leads is
chosen to be t−1 = t0 = 0.1t. In the QD, the on-site energy
ε0 =−2t and the Coulomb repulsion U = 6t. For compari-
son, we also plot the result of the pure one-site sweep with
a random initial wave function. It is noted that the first
three steps of our new algorithm are a two-site sweep. One
can see from the figure that the initial two-site sweep gives
a very good start point for one-site sweep even when the
initial two-site sweep is not converged. The ground-state
energy obtained by this algorithm is very close to that
obtained by the two-site sweep. More importantly, with
this hybrid sweep algorithm, one not only gets an accu-
rate eigen-energy but also a very accurate wave function
with cheaper price. This sweep algorithm also works for
the excited states. For higher excited states, the error in
the eigen-energy is usually larger than those of the ground
state and lower excited states. However, when we keep up
to 256 states during the sweep the accuracies of the lowest
10 states are desirable.
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Fig. 2: Ground-state energy Eg (solid curve) and the occupa-
tion N0 (dashed curve) of the QD vs. the QD level. Note that
the axis for N0 is on the right. The hopping between the leads
and the QD is 0.1t and the on-site interaction is U = 6t. The site
and the electron numbers are N = 9, N↑ =N↓ = 4, respectively.

We now use this method to calculate the wave functions
and the eigen-energies of the system at different gate volt-
ages. The ground-state energy and the electron occupation
number in the QD of the system with N = 9, N↑ =N↓ = 4
are plotted in fig. 2. One can see that for a positive
on-site energy, the electron occupation in the QD is
small and the ground-state energy is almost independent
of the gate voltage. For a large negative QD level, the
QD is doubly occupied and the ground-state energy
becomes a linear function of the QD level. The slope of
the function is 2, which agrees with the result of N0 � 2.
In the regime of −6t� ε0 �−2t, roughly corresponding
to the transparent regime (−U � ε0 � 0), it can be seen
that the rate of the changing of occupation vs. the
changing of the QD level is distinctly slower than that
of its neighbor. The abnormality in this regime may be
related to the formation of a Kondo singlet which is
the superposition of the localized and the delocalized
states. Since the delocalized states have lower occupation
number in the QD, the formation of the Kondo singlet
slows down the changing rate of the occupation.

Dephasing and decoherence. – Once we have
the wave functions, we can simulate the kinetics of the
interacting system under the gate voltage noise and
the electron-phonon interaction. In the low-temperature
regime, it is expected that only the lowest few states are
involved. Therefore we can study the kinetics by solving
the equation of motion in the truncated Hilbert space
composed of the lowest ten states. We first study the deco-
herence caused by the noise on the QD level by solving the
equation of motion. In the presence of the noise, the QD
level becomes ε0 = ε̄0+V (τ), where ε̄0 is the average QD
level, and V (τ) is the noise due to the fluctuation of the
gate voltage. For a system free from noise, the coherence
between different states, i.e. the off-diagonal elements of

0
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Fig. 3: (a) The temporal evolution of the averaged coherence
between the ground state and the excited states for the QD
level ε̄0 =−3t, ∆V = 0.5t and τn = 40/t. (b) The decoherence
time as a function of the noise characteristic time τn for
different situations: solid curves are those for ∆V = 0.5t and
the dashed ones for ∆V = 1t; filled circles and open circles are
for ε̄0 =−3 and −2t, respectively.

the density matrix, evolves as ρn,m(0)e
−i(En−Em)τ whose

amplitudes do not decay with time. The noise irregularly
shifts the energy levels with different amounts for different
states and causes a transition between the states. Since
the amplitude of the noise randomly changes, different
states eventually lose their phase information over time.
As a result the amplitude of the coherence decays with
time. In fig. 3(a) we plot the time evolution of the
coherence between the ground state and all of the excited
states

∑
e |ρge(τ)| under different conditions. To simulate

the kinetics of the sudden switch of the gate voltage, the
initial wave function is chosen to be the unperturbed wave
function of zero gate voltage in the truncated space. The
density matrix is averaged over 1000 samplings with the
noise V (τ) evenly distributed over the regime [−∆V,∆V ]
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Fig. 4: The relaxation time (solid curves) and the decoherence
time (dashed curves) as functions of the temperature T. Filled
and open circles are for ε̄0 =−3 and −2t, respectively.

to reflect the randomness of the noise. One can see from
the figure that the coherence damped oscillates with time.
The envelope of the temporal evolution curve can be fitted
by an exponential function ∝ e−τ/τd with a decoherence
time τd. The decoherence times under different conditions
are plotted in fig. 3(b). One can see that the decoherence
time decreases with the increase of the noise amplitude
and the noise characteristic time τn. The on-site energy of
the QD also affects the decoherence rate, the higher the
QD level the slower the system loses its coherence. The
boost of the decoherence rate by the increase of the noise
level is quite easy to understand. When the amplitude of
the noise increases, the transition rates and the difference
of energy shifts become larger. Therefore different states
lose the phase information more quickly. The decrease
of the decoherence rate with the decrease of τn is due
to the suppression of the unitary time evolution by the
irregular change of the noise. This is similar to the motion
narrowing effect [30]. From the Hamiltonian, one can see
that the perturbation of the noise is proportional to the
electron number in the QD. Therefore, the average QD
level also affects the kinetics of the QD system. The lower
the QD level, the larger the electron number in the QD,
and the smaller the decoherence time. It should be noted
that although the gate noise is efficient to remove the
phase coherence, it is very inefficient to bring the system
to the thermal equilibrium state as it does not directly
carry the energy away from the electron system. The
relaxation to the thermal equilibrium caused by the noise
is more than ten times slower than the decoherence.
We now study the relaxation and decoherence due to

the electron-phonon interaction. In fig. 4 we plot the relax-
ation time τr and the decoherence time τd as functions of
temperature T under different gate voltages. Note that
∆p is chosen to be t in the calculation. One can see from

the figure that both τr and τd increase as the temperature
decreases and saturate at low temperature as the electron-
phonon scattering saturates to the emitting phonon limit
Γ(ε)∼∆pε3θ(ε). There are two qualitative differences
between phonon-induced relaxation/decoherence and
noise-induced relaxation/decoherence, even though their
perturbation Hamiltonians are both proportional to n0,
the electron number operator in the QD. Firstly, the
phonon-induced relaxation is a little bit faster than the
decoherence, while the noise-induced relaxation is more
than ten times slower than the decoherence. Moreover,
the phonon-induced relaxation and decoherence decrease
with the lowering of the QD level. The differences rise
from the fact that the electron-phonon scattering is an
inelastic scattering. The electron system approaches to
thermal equilibrium through an the absorbing or emitting
of phonon. As the electron system loses both energy and
phase information by the absorbing/emitting of phonon,
τr and τd are of the same order. Furthermore, the main
contribution of the n0 operator to the phonon-induced
relaxation/decoherence comes from the off-diagonal
elements n0(ε) with ε 
= 0. For a lower QD level, the
electrons are more deeply trapped in the QD and it is
harder for them to hop to higher-energy states. On the
other hand, the main contribution of n0 to the noise-
induced decoherence are the diagonal terms, that is the
average electron occupation number in the QD. Therefore
the lower the QD level, the quicker the noise-induced
decoherence.

Conclusion. – In conclusion, we propose an improved
matrix product states algorithm to calculate the excited
states and use this algorithm to study the relaxation
and decoherence caused by the noise and electron-phonon
interaction in the interacting QD system. Although both
of these two mechanisms are proportional to the electron
number operator n0 in the QD, the kinetics due to these
two mechanisms are quite different. The noise shifts the
energy with different amounts for different states and
causes a transition between the states. The irregular
change of the noise results in the losing of the phase
information of the electron system and hence of the
decoherence. However, the noise does not directly carry
energy from the electron system, therefore the energy
relaxation due to noise is very inefficient. When the
electron-phonon interaction is present, the electron system
relaxes to the thermal equilibrium by an absorbing or
emitting phonon. As the electron system loses both energy
and phase information after the scattering, the energy
relaxation and decoherence time are of the same order for
the electron-phonon scattering. Moreover, the main effect
of the noise comes from the diagonal terms of n0, while for
the electron-phonon scattering it is from the off-diagonal
terms. As a result, the noise-induced decoherence increases
with the lowering of the QD level, but the relaxation
and decoherence due to the electron-phonon scattering
decrease.
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