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PACS 87.10.-e – Biological and medical physics: General theory and mathematical aspects
PACS 83.80.Xz – Liquid crystals: nematic, cholesteric, smectic, discotic, etc.
PACS 47.60.-i – Flow phenomena in quasi-one-dimensional systems

Abstract – Continuum hydrodynamic models of active liquid crystals have been used to describe
dynamic self-organising systems such as bacterial swarms and cytoskeletal gels. A key prediction
of such models is the existence of self-stabilising kink states that spontaneously generate fluid
flow in quasi-one dimensional channels (Voituriez R. et al Europhys. Lett., 70 (2005) 404).
Using simple stability arguments and numerical calculations we extend previous studies to give
a complete characterisation of the phase space for both contractile and extensile particles (i.e.
pullers and pushers) moving in a narrow channel as a function of their flow alignment properties
and initial orientation. This gives a framework for unifying many of the results in the literature.
We describe the response of the kink states to an imposed shear, and investigate how allowing the
system to be polar modifies its dynamical behaviour.

Copyright c© EPLA, 2009

Suspensions of flagellate bacteria swim in quasi-
turbulent swirls that suggest long-range collective
ordering [1]. Cytoskeletal filaments and motor-proteins
spontaneously form stars and spirals without any external
guide [2]. These are just two examples of a class of
self-organizing system that poses a novel challenge to
physicists, as the ordering is intrinsically non-equilibrium
in nature. The pattern formation is a dynamic phenom-
enon that relies on a continuous expenditure of energy by
the individual particles as they actively generate forces
on each other and/or the surrounding medium [3].
Convergent strands of research focused on modeling

bacterial swarms [4–7] and on cytoskeletal dynamics [8–11]
have suggested that the collective behaviour seen in both
types of system can be described in the continuum limit
by the same phenomenological, hydrodynamic model.
This builds on the equations of liquid-crystal hydrody-
namics, which capture the inherent directionality of the
particles (e.g. bacteria, microtubules), and adds extra
non-equilibrium terms to account for the activity. One of
the most striking predictions of the active-liquid-crystal
model has been that, under certain conditions, the
uniform aligned state is unstable [4]; furthermore, when
confined to a quasi-one dimensional slab geometry by flat
interfaces (fig. 1) this instability can lead to the onset of
a spontaneous steady flow [12,13]. Previous studies of the
spontaneous flow transition in the active liquid crystal

(a)E-mail: s.edwards1@physics.ox.ac.uk

Fig. 1: Quasi–one-dimensional slab geometry, with solid, no-
slip walls lying parallel to the x-axis ensuring that only the
x-component of the fluid velocity is non-zero. The orientation
angle of the director field θ is measured such that θ= 0 is
parallel to the walls, and θ= π/2 is perpendicular.

model using both analytic [12] and numerical [14–16]
approaches have focused on illuminating only certain
neighbourhoods of the complete phase space. To help map
the phenomenological coefficients in the continnum theory
onto microscopic parameters, and to aid in identifying
their values for a given physical system, it is helpful to
have a more complete picture of the effect of varying
key coefficients. Therefore our aim in the letter is to
extend and unify previous studies by carrying out a
complete numerical exploration of the phase space formed
by three of the most important physical characteristics
of the system: the type and strength of the flow field
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generated by the individual particles, their flow alignment
behaviour, and the initial orientation of the director field.
We distinguish six spontaneous flow states, describe their
response to an applied shear, and explain how they are
modified in a system with polar symmetry.
We assume that, apart from their activity, the assembly

of particles can be well approximated as nematic liquid
crystal —that is, there is no difference between the two
ends of an individual particle. The effect of relaxing
this assumption by allowing the particles to be polar is
discussed at the end of this letter. The hydrodynamics of
nematic liquid crystals is well developed [17]. We adopt
the Erickson-Leslie-Parodi approach [12], in which the
nematic order parameter is a fixed-magnitude unit vector
field �n which evolves according to

∂tni+ �u · �∇ni = λDijnj −Ωijnj +Γhi, (1)

where �u is the velocity field of the solvent; λ is the
flow alignment parameter, more on which below; Γ is a
rotational viscosity; �h is the molecular field given by

hi =K∇2ni (2)

(assuming only a single elastic constant K); and

Dij =
1

2
(∂iuj + ∂jui); Ωij =

1

2
(∂iuj − ∂jui). (3)

The first two terms on the right-hand side of eq. (1)
describe alignment (or tumbling) of the director field
by local shear flow. The third term accounts for the
tendency of the ordered nematic to resist distortions,
and arises ultimately from excluded-volume interactions
between individual particles.
The flow field �u obeys the Navier-Stokes equation

ρ(∂t+ �u ·∇)ui = ∂j(σij)+ η∂j(∂iuj + ∂jui), (4)

where ρ is the fluid density and η is the viscosity. The
passive part of the stress tensor σij is

σpij =−pδij −
λ

2
[nihj +njhi] +

1

2
[nihj −njhi], (5)

where p is the bulk pressure.
Equations (1)–(5) are generalised to describe active

systems by introducing one or more terms σaij to the stress
tensor, so that σ= σp+σa. These active stresses account
for the forces generated by the individual particles, as a
function of the local director field, and cannot be derived
from a free energy; however, their form can be arrived at
from considering the symmetry of the flow field generated
by the particles. It is commonly assumed that this flow
field can be described to leading order as dipolar, and
that higher-order contributions can be neglected, when
considering far-field interactions and long time scales [4].
The appropriate active stress tensor for a suspension of
force dipoles is

σaij =−ζninj , (6)

Fig. 2: The dipolar flow fields (curved arrows) generated by
extensile (left) and contractile (right) particles. The straight
vertical arrows represent the director field, which is along the
rod axis for rod-like (λ> 0) particles and perpendicular to the
disk plane for discoidal (λ< 0) particles.

where ζ is the activity coefficient, the meaning of which
is discussed below. One can also add active terms to the
director equation of motion, eq. (1), to account for self-
alignment effects [12], but as such terms do not play an
important role in the spontaneous flow transition they are
neglected here. For the same reason, we neglect active
contributions to the isotropic pressure p.
The two key parameters that characterise the individual

particles are the activity parameter ζ and the flow align-
ment parameter λ. Both the magnitude and sign of each
have an easily understood physical significance. The sign
of ζ determines whether the dipolar flow field generated by
the particles is extensile (ζ > 0) or contractile (ζ < 0), as
illustrated in fig. 2. In the swimmer literature, an alter-
native nomenclature is sometimes used, with extensile
swimmers described as pushers and contractile swimmers
as pullers. The magnitude of ζ relates to the strength
of the forcing, or equivalently the rate at which the
particles expend energy.
The flow alignment parameter λ determines how the

director field responds to a shear flow. A shear flow can be
decomposed into an extensional and a rotational compo-
nent, and the magnitude of λ determines their relative
influence. For |λ|< 1, the rotational part of the flow always
dominates regardless of the director orientation, and thus
the director will continuously rotate under shear. This is
the flow tumbling regime. For |λ|> 1, however, the director
will tend to align at a unique angle to the flow direction,
θL =

1
2 cos

−1 1
λ
, at which the extensional and rotational

parts of the shear flow balance. This is the flow align-
ing regime. In general, molecule-sized nematic liquid crys-
tals are flow aligning and larger objects are flow tumbling,
since for the extensional flow to dominate there must be
enough Brownian rotational diffusion to wash out the rota-
tional part of the flow. The sign of λ is also important, and
relates to the shape of the individual particles. Rod-like
objects have λ> 0; discoid objects have λ< 0; and λ= 0
corresponds to spheres.
The original analytic prediction of the spontaneous

flow transition by Voituriez et al. [12] considered the
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Fig. 3: Stable states (in activity ζ vs. flow alignment parameter λ) for a one-dimensional slab of active nematic. Initial director
orientation (a) parallel to the walls θ0 = 0, (b) perpendicular to the walls θ0 =

π
2
. In the shaded (unshaded) regions the

initial state is unstable (stable) to small perturbations. The phase boundaries are given by eq. (7). The diagrams show the
configuration of the director field �n for the steady spontaneous flow state that arises in each unstable region. (c) Example
flow fields ux(y) corresponding to the spontaneous flow states identified in (a) and (b). Parameters used are: for E1/C1,
λ=+1.5/− 1.5, ζ =+0.001/− 0.001, θ0 = 0/π2 ; for E2/C2, λ=+1.5/− 1.5, ζ =+0.001/− 0.001, θ0 = π

2
/0; and for E3/C3,

λ= 0/0, ζ =+0.001/− 0.001, θ0 = π
2
/0. Other parameters are given in the text.

contractile (ζ < 0), discoidal, flow aligning (λ<−1)
portion of phase space. Previous numerical studies by
Marenduzzo et al. [15] considered both extensile and
contractile systems, for rod-like particles (λ> 0). We
numerically explore the complete (ζ, λ) phase space, and
vary the orientation θ0 of the initial uniformly aligned
state, to access a number of novel spontaneous flow states.
Equations (1)–(6) were solved, using a hybrid Lattice

Boltzmann approach analogous to that described by
Marenduzzo et al. [15], in the one-dimensional geom-
etry of fig. 1. We follow Cates et al. [18] in using free
boundary conditions for the director field (∂yni = 0 at
the walls); the effect of fixed boundary conditions will be
mentioned below. The following parameter values were
used throughout: slab width L= 100, K = 0.04, η= 1.27,
and Γ= 0.2 (all in simulation units). The director field
was initially uniform and aligned at an angle θ0 to the
walls. To break the symmetry we perturbed the uniform
state by generating a small kink at the centre of the slab
by rotating the director in the left half of the domain
clockwise 0.1 radians and that in the right half the

same amount anti-clockwise. The diagrams in fig. 3 show
where the system was found to be stable (unshaded)
and unstable (shaded) against the perturbation, for (a)
θ0 = 0, and (b) θ0 = π/2. The critical value of the activity
ζc corresponding to the phase boundary is determined
analytically by linearizing the equations of motion around
the initial state, and checking when a non-uniform
solution exists, following Voituriez et al. [12]

ζc =




π2K(4ηΓ+ (λ− 1)2)
2L2(λ− 1) , for θ0 = 0,

π2K(4ηΓ+ (λ+1)2)

2L2(λ+1)
, for θ0 =

π

2
.

(7)

The director configurations in fig. 3 are typical numer-
ical results obtained after the spontaneous flow state is
reached in each of the unstable regions. There are six
in total, three each for extensile (labeled E1, E2, E3)
and contractile (C1, C2, C3) systems. In the previous
work by Marenduzzo et al. [15,16], regions E1 and C3
were explored. The C2 state was predicted analytically
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in Voituriez et al. [12] but has not yet been studied
numerically.
The six kink states are, for the geometry we consider,

related in pairs by a symmetry transformation. This
symmetry is apparent from an examination of the flow
profiles generated by each type of spontaneous flow state,
shown in fig. 3(c). Notice that the states naturally fall
into three pairs (E1/C1, E2/C2 and E3/C3), each with
the same type of flow profile, but director fields rotated by
π/2 radians with respect to each other. The states in each
pair have ζ and λ values with the same magnitudes, but
opposite signs. This highlights the symmetry inherent in
the equations of motion: a change in sign of ζ is equivalent
to a change in sign of λ together with a π/2 rotation of
the director field; an extensile rod-like particle interacts
with a flow field the same way as a contractile discoidal
particle rotated by π/2. Note that although this holds true
for the quasi-one dimensional geometry of interest, it is not
universally true; in particular the symmetry does not hold
in three dimensions.
The instabilities leading to each type of kink can

be understood from a simple pictorial model, extending
ideas from [19] (who consider the flow tumbling regime).
Figure 5 illustrates kink perturbations to the initial state
of the director field, θ0 = 0 on the left and θ0 = π/2 on
the right. The discontinuity in �n at the centre of the
kink generates a force on the fluid due to the active term
in the stress tensor σp. The flow direction depends on
the sign of ζ; in the figure, all kinks are drawn such
that the resulting flow is upwards. Because of the no-
slip condition at the walls, this central forcing necessarily
generates a region of uniform shear flow on either side of
the kink, illustrated by the fat vertical arrows. The wide
arrows overlaid on the director field show the effect of the
shear flow on the director in each case: depending on the
values of λ and θ0 either the extensional flow dominates,
attempting to align the director at the Leslie angle (double
headed arrows) or the rotational flow dominates (curved
arrows) and causes the director to tumble. By reacting
thus to the shear flow, the director field either returns
to the initial aligned state and the induced shear flow
vanishes, or the perturbation grows until one of the stable
spontaneous flow states is reached. The same instability
mechanism applies in two dimensions, except that without
walls to restrict flow to one axis there will be no steady
spontaneous flow states. Instead, the instabilities drive
quasi-turbulent mixing flow [6,7].
The six stable kink states in fig. 3 are the fundamental

building blocks for more complicated states observed in
other numerical studies. For instance, if fixed boundary
conditions are used for the director field as in Marenduzzo
et al. [15], a half-kink is necessary at each wall. At higher
activities, striped states can be observed, which are simply
multiple kinks sitting side by side. We do not observe
striped states in our study, even at higher |ζ| values,
because our method for perturbing the initial state seeds
a single kink at the centre. In contrast, Marenduzzo et al.

perturb by increasing the director orientation slightly at
a single point, which stimulates the formation of at least
two kinks, one on either side of the perturbation. Thus the
exact state chosen by the system can depend strongly on
how the initial uniform state is perturbed. It is possible
to have the two different types of flow aligning kink (E1
and E2, or C1 and C2) coexisting in the same state, but
only if the state is specially prepared. Note that we restrict
the director to the (x, y)-plane, which does not allow for
twisted states, as were sometimes observed for high |ζ|
in [15].
Each of the states reacts differently to externally

imposed shear. For the tumbling states, E3 and C3, even
a small amount of imposed shear causes the director to
rotate continuously, and there is no steady state. Indeed
these states are only stable in the first place because they
spontaneously adopt a configuration which generates
no fluid flow, and thus no shear, outside the kink. In
contrast, the flow aligning states E1/C1 and E2/C2 can
survive in applied shear up to a certain magnitude. A
single kink of either type responds to applied shear by
moving towards the wall that is moving in the same
direction as the spontaneous flow. This is illustrated in
fig. 4 for an E1 kink. At some critical wall velocity, the
kink gets too close to the wall and becomes unstable; for
higher velocities, there is no steady kink state and the
velocity profile is standard linear shear flow.
Having catalogued this variety of states, it is important

to ask which we would predict to occur in specific physical
systems. Considering first swimming bacteria: they may be
either extensile or contractile, depending on their mode
of swimming, but most are certainly rod-like (λ> 0) and
furthermore should be flow tumbling (|λ|< 1) given their
relatively large size. Therefore, with reference to fig. 3,
one might expect to see states of type E3 for suspensions
of “pushers” (e.g. E. coli) or C3 for “pullers” (e.g.
Chlamydomonas). This is consistent with the experiments
and analytical predictions of Berke et al. [20] showing that
pushers tend to align parallel to walls, as seen in state E3,
while pullers align perpendicularly as in C3. Note however
that the existence of spontaneous flow in these states relies
on a non-zero elastic constant K; if K→ 0, the width
of the kink also goes to zero, and for the states E3 and
C3 the induced flow would vanish. Therefore attempts to
simulate suspensions of microswimmers must incorporate
liquid crystalline elasticity, for example via excluded-
volume interactions, to see steady flow-generating kinks
of this type. Previous simulations of large numbers of rod-
like swimmers in the literature [21,22] do not incorporate
excluded-volume interactions, and therefore would not be
expected to reproduce any such steady spontaneous flow
states. However, our predictions are consistent with the
instabilities of uniform aligned states observed in these
simulations. In particular, the enhancement of mixing by
pushers (extensile rods) but not by pullers (contractile
rods) [7,23] can be explained with reference to fig. 5. For
the value λ= 1 assumed by Saintillan et al. [22], an aligned
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Fig. 4: Response of an E1-type kink to an applied shear, and the corresponding induced flow profile. The shear is generated by
moving the right wall with a steady upwards velocity vwall. From left to right, vwall = 0.005, 0.01, 0.02 in simulation units.

Fig. 5: Mechanism driving the (in)stability of an initially uniformly aligned state. Thin straight arrows show the director field,
following a kink perturbation acting on a state with initial orientation θ0 = 0 (left) and θ0 = π/2 (right). Arrowheads pointing
outwards (inwards) denote extensile (contractile). Wide vertical arrows show shear flow generated by the kink. Wide arrows
superimposed on the director field show the influence of the shear flow upon it: either aligning (straight, double-headed arrows)
or tumbling (curved arrows).

state of contractile rods is stable whereas one of extensile
rods is unstable.
For solutions of cytoskeletal rods and molecular motors

there is experimental evidence for the active stress being
contractile [24], but it is not clear whether they should
be treated as flow aligning or flow tumbling. Voituriez
et al. [12] assumed the former, in which case the particles
must be discoidal (λ<−1) for spontaneous flow to occur,
via states C1 or C2. If they are flow tumbling, then they
could be expected to generate kinks of type C3. In either
case, our results suggest that cytoskeletal components will

tend to align roughly perpendicular to the walls, if the
director is not otherwise pinned at the boundary.
The story changes significantly if the particles are

allowed to be polar, having a preferred direction along
which they will move. Polarity is accounted for in the
model by including more active terms that are forbidden
by symmetry in the nematic case [25]. At lowest order,
these comprise an extra active contribution to the stress
tensor σpolij = β(∂inj + ∂jni), and the replacement of �u
in the director equation of motion (eq. (1)) with �u+β�n
(for simplicity we assume that both these terms carry
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Fig. 6: The twelve distinct kink types that can occur when the
particles are polar. Only six of them —those with “up/down”
alignment— are persistent long-term states, with the others
moving sideways after formation until they are annihilated at
a wall.

the same polar activity coefficient β, but in general they
may be different). When β is allowed to be non-zero, the
number of distinct kink states is doubled with respect to
the nematic case (fig. 6) since each of the original kinks
illustrated in fig. 3 now has two possible alignments. The
nematic states for which the kink centre is parallel to the
walls (E1, C2 and C3) each have “up” and “down” polar
analogues; the nematic kinks with centres perpendicular
to the walls (C1, E2 and E3) have “left” and “right”
analogues. Numerical studies of the polar kinks show
that only the “up/down” kinks remain stationary and
persistent. The “left/right” kinks, by contrast, move in
the direction they point until they reach a wall, and
then vanish, leaving a uniformly aligned state with zero
induced flow. Note that the symmetry between the three
pairs of states E1/C1, E2/C2 and E3/C3 is broken by
the introduction of polarity. The remaining stationary
kinks can be further subdivided into two groups: those
that point inwards (E1up, C2down and C3down), for
which the sharpness of the peak in the induced velocity
profile increases with β, and those that point outwards
(E1down, C2up and C3up) for which it decreases. If the
local concentration of particles is allowed to vary, evolving
via diffusion and self-advection, the particle concentration
is enhanced at the centre of the kink and reduced at the
walls for the inward kinks, but tends to build up at the
walls for the outward kinks.
We have unified and extended previous studies of spon-

taneous flow in quasi-1D active nematics by numerically
exploring the range of possible steady states as the activ-
ity, flow alignment characteristics and orientation are
varied. We predict three qualitatively distinct types of
spontaneous flow state, and examine how they respond
to externally applied shear. We have also studied how
the ensemble of stable states is affected when the active
particles are made polar. Knowledge of the range of possi-
ble states should help match continuum and microscopic
models of active materials and guide future experiments
and simulations attempting to realize spontaneous fluid
flow in narrow channels.
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