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Abstract – We propose a model to describe the formation of a spin-polarized half-metallic state
in the proximity of a ferromagnetic metal monolayer embedded into a semiconducting host. The
main physical ingredients of our model are the Coulomb interaction between two electrons at the
same metallic site, the charge redistribution around the monolayer and the hybridization between
the electron states of the metal and of its host. We discuss the phase diagram of the model and the
relevance of our results in connection with experimental and numerical results on digital magnetic
heterostructures.

Copyright c© EPLA, 2009

Introduction. – Heterostructures in which (sub)-
monolayers of a transition ferromagnetic metal (FM) are
embedded into a semiconductor (SC) host are now the
object of an intense investigation in view of possible appli-
cations to spintronics. These FM/SC heterostructures
can be realized either with single FM (sub)monolayers,
or with periodic arrays of coupled FM (sub)monolayers,
the so-called digital magnetic heterostrucutres (DMH).
Most experimental studies are devoted to systems in
which Mn (sub)monolayers are introduced into a III-V
SC (GaAs or GaSb). These studies show that short-
or long-range ferromagnetic order exists both in the
case of a single (sub)monolayer [1] and in the case of
DMH [2]. Little attention has been paid, so far, to FM/SC
heterostructures with a SC belonging to the IV group.
On the other hand, ab initio calculations have been

applied to DMH, with a periodic array of Mn monolayers
along the (001) direction of a III-V SC (Mn/GaAs [3]) and
of a IV-group SC (Mn/Ge [4] or Mn/Si [5,6]). All these
calculations put in evidence three important facts: i) ferro-
magnetism is more favorable than antiferromagnetism in
the Mn layers; ii) the charge carriers are confined near

(a)E-mail: sergio.caprara@roma1.infn.it

the Mn layers; iii) the electron spectrum is half-metallic,
with strongly spin-polarized nearly two-dimensional (2D)
energy bands. The question then arises about the common
physical origin of these facts and their connection to some
peculiarity of the geometry and content of the DMH.
Indeed, it is well known that half-metallicity is an excep-
tion rather than the rule in three-dimensional (3D) FM,
where narrow d bands coexist with wide (s, p) bands, for
which the full exchange splitting is difficult to realize.
To elaborate on the outcomes of the above-mentioned
ab initio calculations and clarify the intimate relation
that connects ferromagnetic ordering, the formation of
2D bands, and half-metallicity, in this letter we use
an Anderson-like model. Rather than providing an
accurate description of the band structure of a FM/SC
system, our model is aimed at capturing the essential
ingredients, as suggested by numerical calculations, i.e.,
the strong Coulomb interaction between d electrons,
the charge-carrier redistribution and confinement near a
FM monolayer, and the hybridization between the (s, p)-
orbitals of the SC and the d-orbitals of the FM. Despite its
relative simplicity, our description allows for transparent
analytical results, which share many characteristics in
common with the issues of numerical calcuations, with
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the advantage that the model parameters can be varied
independently, and a phase diagram can be obtained. We
show that a generic half-metallic behavior is indeed made
possible near a FM layer by the formation of 2D bands
below the edge of the SC bulk 3D band, as the cooperative
result of charge redistribution and (s, p)-d hybridization.
For these bands, the full exchange splitting occurs in the
ferromagnetic state for physically reasonable values of
the exchange interaction. Our results also show that the
spin-polarized state might be realized as a ferrimagnetic
structure resulting from spatially separated FM and SC
electron states which are polarized in opposite directions.

The model. – To describe the occurrence of a
half-metallic ferromagnetic state near a single FM
(sub)monolayer (henceforth, generically layer), we intro-
duce a model which accounts for the relevant degrees of
freedom only. In particular, we neglect orbital degrees of
freedom, which are responsible for the higher value of the
FM spin, resulting from Hund rule within the d-orbitals
of tg and eg symmetry, but do not play an important role
in the formation of a ferromagnetic state. The position
vector within our system is R= (r, z), with r parallel and
z perpendicular to the layer, which is located at z = 0.
The corresponding wave vector is K= (k, κ).
For the sake of definiteness, we consider the situation

in which the SC valence band is deep, and can be
safely ignored, and the conduction band, arising from
a single orbital, taken for simplicity as an s-orbital,
can be reasonably described, within an effective mass
approximation, by the Hamiltonian

Hs =
∑
k,κ

∑
σ

εk,κ s
†
k,κ;σsk,κ;σ,

where s
(†)
k,κ;σ annihilates (creates) an electron with a wave

vector K= (k, κ) and spin projection σ=↑, ↓, and the
conduction band is given by

εk,κ =
�
2

2m∗
(k2+κ2)≡ εk+ εκ,

m∗ being the effective mass. The Hamiltonian of an ideally
isolated layer is

Hd =
∑
k

∑
σ

εd d
†
k;σdk;σ + I

∑
i

nd,↑(ri)nd,↓(ri),

where d
(†)
k;σ annihilates (creates) an electron with wave-

vector k and spin σ on a d-orbital. For simplicity, we
assume a single orbital and neglect the small overlap of
d-orbitals at different sites, taking a dispersionless level
εd, the mobility of d electrons being mainly due to the
hybridization with the SC s-orbitals. Our model qualita-
tively corresponds to the real situation in digital alloys
such as GaAs/Mn. Indeed, according to the Hund rule for
the Mn ions in a tetrahedral environment, two compet-
ing states Mn3+ (d4) and Mn2+ (d5), are involved in the
hybridization with the (sp)-states of the semiconducting

host, leading to e2 and t2 orbitals in the d
5 configuration,

and to e2 and t3 orbitals in the d
4 configuration, respec-

tively. The nonbonding e-states may be neglected, and
the occupation number of a single d-orbital in our model
corresponds to that of the t2 states.
The Coulomb interaction between two electrons in the

same d-orbital, which is the driving force of magnetism,
is described by a Hubbard term of strength I. We assume
that the electrons are essentially localized at the FM sites
ri, and nd,σ(ri) represents the number of d electrons with
spin σ on a given site.
When the layer is inserted into the SC matrix, various

effects arise. Those which are relevant to the formation
of a spin-polarized half-metallic state, as suggested by
ab initio calculations, are the SC-FM (here, s-d) hybridiza-
tion V (z; r− r′) and the modulation of the local chemi-
cal potential U(z), ruling the charge redistribution within
the SC matrix around the layer. Both effects preserve
the translational invariance along the layer, while break-
ing the translational invariance along the z-axis. The
simplest approximation consists in describing these effects
as contact terms at r= r′ and z = 0, corresponding to the
Hamiltonians

Hs-d = 1√
N⊥

∑
k,κ

∑
σ

(
V d†k;σsk,κ;σ +h.c.

)
,

Hloc = U

N⊥

∑
k,κ,κ′

∑
σ

s†k,κ;σsk,κ′;σ,

whereN⊥ is the number of κ values allowed within the first
Brillouin zone by the boundary conditions. The first term
describes a set of independent one-dimensional Anderson
models, labeled by the dummy index k.
We treat the Hubbard term in the Hartree approxima-

tion, and adopt the linearization

nd,↑(ri)nd,↓(ri)→ nd,↑ nd,↓(ri)+nd,↓ nd,↑(ri)−nd,↑nd,↓,
where nd,σ = 〈nd,σ(ri)〉 is the average number of electrons
with spin σ in a d-orbital. This yields two spin-dependent
Hartree d levels εd,σ = εd+ Ind,−σ. We consider here the
case of a generic filling and discard antiferromagnetic or
incommensurate order, which is unlikely for an isolated
layer, unless particular nesting conditions occur in the
layer band structure.
The quantum-mechanical problem associated with the

Hamiltonian Hs+Hd+Hs−d+Hloc, after the Hartree
decoupling of the Hubbard term, can be dealt with by
means of standard techniques, which yield the Green
functions

Gdd =
U(1−D)G0dd

U(1−D)− |V |2DG0dd
,

Gss(κ, κ
′) = G0ss(κ)δκ,κ′ +

U

N⊥
G0ss(κ)G

0
ss(κ

′)

× U + |V |2G0dd
U(1−D)− |V |2DG0dd

,
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where an implicit diagonal dependence on the wave vector
k, on the complex frequency Z, and on the spin index σ
is understood throughout the letter. Here,

G0dd =
1

Z − εd ,

G0ss(κ) =
1

Z − εk− εκ ,

D=
U

N⊥

∑
κ

G0ss(κ) =
iu√
Z − εk

,

where the square root must be taken with a positive

imaginary part, u≡−π2UW−1/2z , and (m∗Wz)−1/2 is a
wave vector cutoff. The equation D= 1 describes 2D
bound states (for U < 0, i.e., u> 0) or antibound states
(for U > 0, i.e., u< 0) formed near the edge of the SC
conduction band due to the charge redistribution around
the layer. These states are localized in the z-direction, but
propagating along the layer. In this letter, we treat the
case u> 0, when bound states at energies ε̄k = εk−u2 are
split off the bottom of the SC conduction band. We do not
need in the following the explicit expressions of the Gsd
and Gds Green functions.
The s-d hybridization removes the poles of the s Green

function at bound states ε̄k and promotes instead 2D
s-d bands, which appear as poles of Gdd and Gss(κ, κ

′).
Analytical expressions can be found for the momentum-
integrated Green functions:

Ḡdd(Z) =
1

N‖

∑
k

Gdd =
Φ(Z)−Φ(Z −W )

W
,

where N‖ is the number of k-vectors allowed within the
first Brillouin zone by the boundary conditions, W is the
width of the 2D band εk,

Φ(ζ) = ζGdd− 2vG2dd
[
i
√
ζ

−(u− vGdd) log(u+ i
√
ζ − vGdd)

]
,

and v=−|V |2u/U (with U < 0, i.e., u> 0 and v > 0);

Ḡss(Z) =
1

N‖

∑
k,κ

Gss(κ, κ) =
Ψ(Z)−Ψ(Z −W )

W
,

with

Ψ(ζ) = log
u+ i

√
ζ − vGdd
i
√
ζ

− iπN⊥
√
ζ

Wz
,

where the last term describes the 3D SC conduction band.
The densities of states are then found as

Nα(ω) =− 1
π
ImḠαα(Z = ω+ iδ),

with α= s, d and δ = 0+. In the forthcoming numerical
analysis we take δ/W = 10−3, two orders of magnitude
smaller than the other dimensionless energy scales.

Self-consistent solution. – For numerical simplicity,
we work at fixed chemical potential and zero temperature,
indicating the Fermi energy with εF . When the system
is spin-polarized, the number of ↑ and ↓ spins is different
and the source of this unbalance is self-consistently related
to the splitting of the d level, εd,σ = εd+ Ind,−σ. Let us
indicate with N σα (ω) the density of states for spin σ, which
depends self-consistently on nd,−σ. Then, the two coupled
self-consistency equations which determine nd,σ have the
form

nd,σ =

∫ εF
−∞
dωN σd (ω).

By expressing, say, nd,↓ as a function of nd,↑ and then
substituting into the equation for nd,↑, the two equations
are decoupled, and a single equation of the form nd,↑ =
F (nd,↑) is obtained, which can be efficiently solved, e.g.,
by iterative bisection. Once the self-consistent value of
nd,↑ is found, one can proceed with the straightforward
evaluation of nd,↓ and

ns,σ =

∫ εF
−∞
dωN σs (ω).

Also the thermodynamic grand-canonical potential can be
calculated, as

Ω=
∑
α=s,d

∑
σ=↑,↓

∫ εF
−∞
dω (ω− εF )N σα (ω)− I nd,↓ nd,↑,

where the last term avoids double counting of the Hartree
energy.
To capture the overall qualitative behavior of the

numerical results, we adopted the set of parameters
εd/W =−0.5, u/W 1/2 = 1.0 and v/W 3/2 = 0.05, without
aiming at an accurate fit of the band structure. We then
explored the properties of our model for varying εF and
I. Having fixed the zero energy level at the bottom the
3D SC conduction band εk,κ � 0, we study only the case
εF � 0, as there are no free particles in the system to fill
the 3D SC conduction band, so that the chemical potential
is, at most, pinned at εF = 0.
To characterize the various phases of our model, we

define the partial magnetizations md = nd,↑−nd,↓, ms =
ns,↑−ns,↓, and the total magnetization mtot =md+ms.
The resulting phase diagram in the I/W vs. |εF |/W plane
is shown in fig. 1. A spin-polarized solution is always
found when I/W is sufficiently large. For |εF |/W � 0.55,
s spins are antiparallel to d spins (i.e., mdms < 0). Since
d and s electrons are spatially separated, the system is
ferrimagnetic. For larger |εF | the number of majority
s spins exceeds the number of minority s spins and
the system becomes ferromagnetic (i.e., mdms > 0). A
ferromagnetic ground state is also found when |εF |/W �
0.25, in a small region close to the transition to the
paramagnetic state. Sharp discontinuities at the 2D band
edges produce kinks in the magnetization, and curvature
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Fig. 1: (Color online) Phase diagram of the model for εd/W =
−0.5, u/W 1/2 = 1 and v/W 3/2 = 0.05. The labels PM, FM and
fm indicate the paramagetic, ferromagnetic, and ferrimagnetic
phase, respectively. The FM-fm transition and the PM-FM
transitions are of second order. The PM-fm transition is of
second order for small and large |εF /W |, and of first order in an
itermediate window. The change of character of the transition
line is marked by a different shade.
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Fig. 2: (Color online) Thick line: Density of states in units of
W−1 (DOS) as a function of ω/W for the same parameters
as in fig. 1 and I/W = 2, εF /W =−0.4 (marked by a vertical
line). The minority-spin DOS is plotted with a negative sign.
Thin lines correspond to the d and s contributions, the latter
being essentially flat within each band. The system is half-
metallic. The upper minority-spin band is located at ω > 0,
and is therefore embedded into the 3D SC band.

effects result in a first-order transition and re-entrant
phenomena in a window 0.15� |εF |/W � 0.35.
The spectrum in fig. 2 is taken for |εF |/W = 0.4 and
I/W = 2.0, and is typical of this region of parameters,
where we find a ferrimagnetic half-metallic behavior, with
the Fermi level crossing only the lower minority spin 2D
band, mainly with s character. The majority spin band
is gapped, with the lower band full and the upper band
empty, and is therefore insulating. Of course, due to the
strong hybridization, a large charge transfer from the d
state to the s state occurs in the lower majority-spin band.
This scenario reproduces with fair qualitative agree-

ment, e.g., the behavior of the Mn/Si system studied in
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Fig. 3: (Color online) Main panel: md (upper line) and ms
(lower line) for the same parameters as in fig. 1 and εF /W =
−0.4. The system is ferrimagnetic (fm) and half-metallic for
I/W > 1.2 and paramagnetic (PM) and insulating for I/W �
1.2. Inset: Grand-canonical thermodynamic potential for the
fm (upper line) and PM (lower line) state. The two lines merge
at the second-order transition point.

ref. [6]. Upon reducing I/W , the system eventually under-
goes a transition to the paramagnetic phase. In fig. 3,
we show the behavior of the partial magnetizations md
and ms for |εF |/W = 0.4, as functions of I/W (in the
inset, the behavior of the grand-canonical thermodynamic
potential is also shown). The partial magnetizations vanish
at the second-order phase transition point, I/W = 1.2, at
which the half-metal becomes an insulator, since the finite
density of states at the band edge makes the paramagnetic
metal unstable.
The system is half-metallic also for |εF |/W � 0, 25, with

the Fermi level crossing the upper majority spin band,
whereas the lower minority spin band is full and insulating.
We point out that the driving force of magnetism is the

Coulomb repulsion I on the d-orbitals. To understand the
magnetic phases in the phase diagram of fig. 1, we can
consider the case when I is sufficiently large, so that the
d level of majority spins is full and the d level of minority
spin is empty. Then, the s-d hybridization shifts only the
majority-spin bound-state s band from its paramagnetic
position, and two bands are formed for the majority spins,
with strong s-d mixing, whereas the minority-spin s band
stays almost unchanged and keeps a pure s character. The
sign of the shift of the majority-spin s band depends on
the relative positions of the majority-spin d level (e.g.,
εd,↑ in the case of up majority spins) and the center of
the bound-state s band in the paramagnetic phase (ε̄). If
εd,↑ > ε̄, as it is the case in fig. 1, with lowering the Fermi
level, the situation is reached when the number of majority
s spins exceeds the number of minority s spins, and the s-d
spin alignment changes from antiferromagnetic (leading to
global ferrimagnetism) to ferromagnetic. In the opposite
situation, when εd,↑ < ε̄, a regime where the majority-spin
s band is shifted to higher energy is easily reached, so
that, with lowering the Fermi level, the s-d spin alignment
changes from ferromagnetic to antiferromagnetic.
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Concluding remarks. – Our Anderson-like model
captures the main ingredients of the physics of a FM
layer in a SC host, and is therefore able to account for
the occurrence of a spin-polarized half-metallic behavior
in these systems. This is the cooperative result of charge
redistribution and confinement around the FM layer and
FM-SC hybridization, giving rise to 2D bands which
undergo a full exchange splitting for physically reasonable
values of the exchange coupling.
Of course, our model misses some aspects of the numer-

ical calculations, such as the orbital dengeneracy, the
crystal-field splitting, and details of the lattice band
structure beyond the effective mass approximation. These
aspects can be accounted for in a straightforward way, by
proper generalizations of the starting model, equipping the
various lattice bands with orbital labels, and considering
the various hybridizations of (s, p) and d bands, allowed by
symmetry. However, the subsequent analysis of the model
would require much heavier numerical effort, making the
results less transparent.
Further lines of investigation concern the role of quan-

tum and thermal fluctuations and the mechanism of
exchange coupling among different FM layers, when these
are organized in a periodic DMH structure.
As far as the first aspect is concerned, we have prelim-

inarly checked that quantum fluctuations of the magneti-
zation, both on the metallic and on the insulating side of
the ferromagnetic-paramagnetic transition are not strong
enough to wash out the mean-field scenario even for an
isolated layer. Spatial fluctuations of the magnetization
are characterized by a |q|2 term which arises from the
expansion of the d-d susceptibility at small wave vectors
of the 2D (intra-layer) fluctuations, within the random-
phase approximation. The dynamics of the fluctuations
is ruled by a (iω/|q|)-term on the metallic side, due to
Landau damping, and by a ω2-term on the insulating
side. In both cases, the fluctuation correction to the mean-
field critical value of the Hubbard interaction I is finite,
although analytical calculations cannot be pushed too far,
and a numerical analysis is required to provide quantita-
tive results. Of course, fluctuations are even weaker in the
case of a 3D DMH.
To evaluate the exchange interaction between two FM

layers, in ref. [7] we used a phenomenological model
which assumed ferromagnetic order within each layer, and
showed that there are two main mechanism, which lead to
the competition of ferromagnetic and antiferromagnetic
coupling. The first interaction, mediated by mobile
electrons in the 2D bound-state bands, is ferromagnetic
when the FM layers are close enough, but changes sign
with increasing inter-layer distance, becoming antiferro-
magetic. A further change of sign, back to ferromagnetic,
is also possible at even larger distances, depending on

the values of the parameters. The second interaction,
mediated by inter-band virtual transitions between 3D
bands, may oscillate with the distance, and is modulated
by an exponentially decreasing prefactor. The case of
a periodic array of FM layers could be studied within
a suitable generalization of the model presented in this
letter, which would allow to treat intra- and inter-layer
exchange on an equal footing.
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