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Abstract – Despite the ubiquitous emergence of skew distributions such as power law, log-normal,
and Weibull distributions, there still lacks proper understanding of the mechanism as well as
relations between them. It is studied how such distributions emerge in general evolving systems and
what makes the difference between them. Beginning with a master equation for general evolving
systems, we obtain the time evolution equation for the size distribution function. Obtained in
the case of size changes proportional to the current size are the power law stationary distribution
with an arbitrary exponent and the evolving distribution, which is of either log-normal or Weibull
type asymptotically, depending on production and growth in the system. This master equation
approach thus gives a unified description of those three types of skew distribution observed in a
variety of systems, providing physical derivation of them and disclosing how they are related.

Copyright c© EPLA, 2009

Introduction. – Many evolving systems, natural
and/or man-made, exhibit skew distributions of charac-
teristic spectra, which have long tails to one side. Among
them power law, log-normal, and Weibull distributions
appear most ubiquitously in a variety of systems. Here the
power law distribution manifests scale invariance of the
system [1]. The concept of self-organized criticality [2],
which is a well-known framework to explain such scale
invariance or criticality, has been applied to a number of
specific models, mostly on the case-by-case basis [2–4].
As a general theoretical understanding in this direction,
the importance of information transfer between the
system and the environment has been recognized [5].
On the other hand, the Yule process [6], dubbed the
rich-get-richer process, Gibrat’s law, or preferential
attachment [7,8] in the literature, has long been known to
produce successfully power law distributions in a variety
of systems, e.g., Pareto’s law [9] or Zipf’s law [10], usually
with exponents greater than two [1]. However, there still
remains ambiguity as some systems exhibit power law
behaviors but with exponents smaller than two [11]. It
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is further well known that in some cases the power law
regime is rather limited, exhibiting some curvature in the
log-log plot and hence other distributions may also well
give a reasonable description for particular sets of data [1].
Related to this, log-normal and Weibull distributions,

which are observed widely, e.g., by biological system sizes,
financial variables, survival or reliability functions, frag-
mentation sizes of particles, etc., exhibit similar behavior
and have long been used as alternatives to the power law
distribution [12–15]. The origin of the log-normal distri-
bution is usually attributed to a large number of small
multiplicative factors which are independent. However,
in an evolving system, such assumption of independent
multiplicative factors corresponds to growth rates varying
randomly at every instant of time (thus forming a
Gaussian distribution), which is neither substantiated nor
realistic. On the other hand, derivation of the Weibull
distribution relies upon extreme value statistics of corre-
lated random variables [16] or empirical assumption such
as fractal cracking [17]. Accordingly, it is not likely to
give an accurate description of the evolving system at the
fundamental level. In particular, it should be noted that
in many cases those distributions may not be discerned,
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d

dt
P (x1, x2, . . . , xN ; t) =

∑
j

∑
x′j

[wj(x
′
j→ xj)P (x1, . . . , x′j , . . . , xN ; t)−wj(xj→ x′j)P (x1, . . . , xj , . . . , xN ; t)] (1)

d

dt
[Nf(x, t)] =

∑
i,j

∑
x1,...,xN ,x

′
j

δ(xi−x)[wj(x′j→ xj)P (x1, . . . , x′j , . . . ; t)−wj(xj→ x′j)P (x1, . . . , xj , . . . ; t)]

=
∑
i

∑
x1,...,xN ,x

′
i

δ(xi−x)[wi(x′i→ xi)P (x1, . . . , x′i, . . . ; t)−wi(xi→ x′i)P (x1, . . . , xi, . . . ; t)], (3)

∂

∂t
f(x, t) =−rf(x, t)+ 1

N

∑
i

∑
x1,...,xN ,x

′
i

δ(xi−x)[wi(x′i→ xi)P (x1, . . . , x′i, . . . ; t)−wi(xi→ x′i)P (x1, . . . , xi, . . . ; t)].

(5)

indicating possible connections between them; this has
never been addressed. Above all, those distributions as
well as the power law distribution have been considered
only at stationarity, and it would be of interest to explore
a non-stationary distribution and its time evolution.
Motivated by these, we in this work attempt to provide

a general framework to describe the skew distributions,
based on the master equation approach to evolving
systems. We consider a master equation, describing
the time evolution of the probability for the system
configuration, and probe the resulting distributions in the
common case that size changes are proportional to the
current size. Observed is the evolving (non-stationary)
distribution, asymptotically of the log-normal or the
Weibull type, as well as the stationary distribution of the
power law type, where the exponent can take any value.
In such a way this approach gives a unified description of
the skew distributions observed in a variety of systems:
It provides physical derivation of them and clarifies how
they are related, thus resolving the long-standing puzzle.

Master equation. – Consider an evolving system
consisting of N elements, the i-th of which is characterized
by, say, “size” xi. We begin with the master equation
for the probability P (x1, x2, . . . , xN ; t) for the system in
configuration {x1, x2, . . . , xN} at time t:

see eq. (1) above

with the appropriate transition rate wj(xj→ x′j). We
are interested in the time evolution equation for the
normalized distribution function f(x, t) for size x at time
t, which is defined by

f(x, t)≡ 1
N

∑
x1,...,xN

∑
i

δ(xi−x)P (x1, . . . , xN ; t). (2)

To probe the time evolution of the size distribution f(x, t),
we multiply eq. (1) by δ(xi−x) and take the summation

over i and over all configurations. This leads to

see eq. (3) above

where it has been noted on the first line that for i �= j, the
first term in the summation of the right-hand side cancels
out the second term in the summation, thus leaving only
terms of i= j.
We write

d

dt
[Nf(x, t)] =

dN

dt
f(x, t)+N

∂f(x, t)

∂t
(4)

and suppose that the total number of elements changes
according to dN/dt= rN , which should apply to a wide
variety of real situations and has been employed in
deriving the Yule-type distribution [7,8]. A typical
example includes the system in which each element tends
to produce a new element of unit size with rate r [15].
In principle, the production rate r may depend on other
parameters of the system, which may be taken into
consideration; for simplicity, here it will be assumed to be
constant. Equation (3) then reads

see eq. (5) above

We consider the case that each element changes its size
(“grows”) by the amount proportional to the current size,
which corresponds to the Yule process, Gibrat’s law, or
preferential attachment [6–8]. In this case the transition
rate reads

wj(xj→ x′j) = λδ(x′j −xj − bxj), (6)

where λ is the mean growth rate and b the growth factor.
This leads eq. (5), upon summed over x′i, to take the form

∂

∂t
f(x, t) =−(r+λ)f(x, t)+λf(x−δ, t) (7)

with δ≡ bx/(1+ b), which governs the time evolution of
the distribution function f(x, t).
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Stationary and non-stationary solutions. – We
first consider the stationary solution and set ∂f/∂t= 0
in eq. (7), which leads to

(r+λ)f(x) = λf(x−δ). (8)

It is straightforward to obtain the solution in the form

f(x)∝ x−α, (9)

which is the power law distribution with the exponent
α≡ ln(1+ r/λ)/ln(1+ b). Note that the exponent α in
this power law distribution, determined by the production
rate, growth rate, and growth factor, can take any value
including values less than two. This contrasts with most
approaches predicting the exponent α greater than two
and may thus provide an explanation of the cases of α
smaller than two [1,11].
To probe the non-stationary solution of eq. (7), we, for

convenience, expand the right-hand side and write eq. (7)
in the form

∂

∂t
f(x, t) =−rf(x, t)+λ

∞∑
n=1

(−1)n δ
n

n!

∂n

∂xn
f(x, t). (10)

It shall be shown that the solution takes the form of the
log-normal or Weibull distribution. In the former case,
with the ansatz

f(x, t) =
1√
2πσx

e−
1
2σ2
(ln x−µ)2 (11)

which depends on time through the mean µ and the
variance σ2, we have the derivatives

1

f

∂f

∂t
=− σ̇
σ
+
µ̇

σ2
(lnx−µ)+ σ̇

σ3
(lnx−µ)2 (12)

and
xn

f

∂nf

∂xn
=

n∑
k=0

ank

(
lnx−µ
σ2

)k
(13)

for nonnegative integer n, which can be proved by math-
ematical induction. The coefficients ank are of the order
unity and given in table 1.
Plugging these into eq. (10) with δ= bx/(1+ b), we

obtain the equations for µ and σ:

µ̇=A+O(σ−2),

σ̇=Bσ+O(σ−1),
(14)

where A and B are constants depending on r, λ, and b:
A = λ

∑∞
n=1 (−1)n (n!)−1an1bn (1+b)−n = λb+(λ/2)b2+

O(b3) and B = r−λ∑∞n=1(−1)n(n!)−1an0bn(1+b)−n =
r−λb+O(b3). Equation (14) is valid for σ growing
sufficiently faster than µ. To the leading order, the
solution reads

µ=At,

σ= σ0e
Bt,

(15)

Table 1: Coefficients in the derivatives of the distribution
functions.

(n, k) ank (log-normal) ãnk (Weibull)

(0, 0) 1 1
(1, 0) −1 γ− 1
(1, 1) −1 −γ
(2, 0) 2−σ−2 (γ− 1)(γ− 2)
(2, 1) 3 −3γ(γ− 1)
(2, 2) 1 γ2

(3, 0) −6+6σ−2 (γ− 1)(γ− 2)(γ− 3)
(3, 1) −11+3σ−2 γ(γ− 1)(7γ− 11)
(3, 2) −6 6γ2(γ− 1)
(3, 3) −1 −γ3

which, for B > 0, indeed manifests the validity in the
limit t→∞. It is thus concluded that for B > 0 or
r > λb+O(b3), the log-normal distribution in eq. (11) is
asymptotically exact, with the mean and the variance
growing linearly and exponentially, respectively, in time.
Then what about the case r < λb? As will be shown

below, the solution is given by the Weibull distribution

f(x, t) =
γ

x

(
x

η

)γ
e−(x/η)

γ

(16)

with the shape parameter γ and the scale parameter η.
Taking this ansatz with time-dependent η and constant γ
leads to the derivatives

1

f

∂f

∂t
=−γ

[
1−
(
x

η

)γ]
η̇

η
(17)

and
xn

f

∂nf

∂xn
=

n∑
k=0

ãnk

(
x

η

)kγ
, (18)

which is again proved by mathematical induction. The
coefficients ãnk, taking the form of a degree-n polynomial
in γ, are given in table 1. These are plugged into eq. (10)
to yield, for large η,

[
1−
(
x

η

)γ]
η̇

η
=C −D

(
x

η

)γ
+O

(
x

η

)2γ
(19)

with constants C = r/γ− (λ/γ)∑∞n=1(−1)n(n!)−1ãn0bn×
(1+b)−n = r/γ+λ(γ− 1)[b/γ− b2/2+O(b3)] and D=
(λ/γ)

∑∞
n=1(−1)n (n!)−1 ãn1bn (1+b)−n = λ[b+(1/2− 3γ/

2)b2+O(b3)]. Equation (19) allows a solution for η if
C =D. This gives γ as a function of r, λ, and b:

γ =

√
− r
λb2
+
1

b
+O(b), (20)

which is valid for r < λb+O(b3). If this holds, it is easy to
see that D> 0 and the scale parameter

η= η0e
Dt (21)
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log-normal Weibull

stationary non-stationary

r bλ> r bλ<

Fig. 1: Evolution of distributions in evolving systems.

indeed grows exponentially in time, justifying eq. (19)
and this solution for long time t. Accordingly, for r <
λb+O(b3), the Weibull distribution in eq. (16) is asymp-
totically exact, where the shape parameter γ is constant
and the scale parameter η grows exponentially with time
constant D−1 = (λb)−1[1− (1/2− 3γ/2)b+O(b2)]≈ 1/λb.
We stress that the log-normal or the Weibull distribu-

tion in eqs. (11) and (16) makes an asymptotically exact
solution of eq. (10) for any value of b only if B or D is
positive, although analytic expressions of A, B, or C (=D)
can explicitly be given as series in powers of b. Roughly
speaking, the size distribution of the system is determined
according to whether production is smaller or larger than
growth, and evolves rather quickly in time to either the
log-normal distribution or the Weibull distribution. In this
sense the two distributions may be considered to belong
to one class, thus providing a natural explanation for
their similarity. Recall also that part of the log-normal
or Weibull distribution appears more or less similar to the
power law distribution. The larger the variance or the scale
parameter, the wider the power law part of the distribu-
tion. As σ or η grows in time, either one thus approaches
eventually the power law distribution with the exponent
α= 1 or 1− γ: At r= λb+O(b2), we have γ = 0 and there
arises a crossover between the two types of distribution.
Figure 1 summarizes the evolution of distribution func-
tions in evolving systems.
Note that this distribution approached in the long-time

limit is different from the stationary distribution in eq. (9).
Then when does the system display the evolving (log-
normal or Weibull) distribution instead of the stationary
power law distribution, and vice versa? To seek for an
answer, we consider deviation g(x, t) from the power law
distribution f(x) in eq. (9), and examine how it evolves in
time. Writing g(x, t) = g(x)eνt and carrying out a lengthy
but straightforward calculation, we obtain the general
form g(x, t) =

∑
ν gν(x, t) with

gν(x, t) = ενx
−ανeν

′t cos(κν lnx− ν′′t+φν), (22)

which exhibits oscillations both in size and in time.
Here ν′ and ν′′ denote the real and imaginary parts
of ν, respectively. The exponent and the wave number
are given by αν =

1
2 ln(1+b) ln[(1+

r+ν′
λ
)2+(ν

′′
λ
)2] and κν =

1
ln(1+b) tan

−1 ν′′
r+λ+ν′ , while the phase φν as well as the

amplitude εν of each mode is determined by the initial
condition. For stability of f(x), the deviation g(x, t) should
decay in time. This is the case for the deviation consisting
of modes with exponents less than αν=0 = ln(1+ r/λ)/
ln(1+ b)≡ α; otherwise there exist modes with ν′ > 0.
Accordingly, when the initial distribution is given by
power law components with exponents not larger than
α, the distribution evolves to the power law distribution
in eq. (9). Conversely, if there are components with
exponents larger than α in the initial distribution, the
power law distribution becomes unstable. In this case the
system is expected to display the log-normal or Weibull
distribution in eq. (11) or (16), depending on production
and growth. (Note that deviation of the above power law
form is not allowed at all in the case of the log-normal
or Weibull distribution because of the non-negativity
condition for all x and t.) Namely, rather a broad initial
distribution with a fat tail evolves to the power law
distribution. On the other hand, starting from a steep
distribution including, e.g., a sharp peak, the system may
not evolve directly to the power law distribution; instead
it is expected to exhibit the log-normal distribution or the
Weibull one.

Discussion. – We have proposed a systematic and
unified description of the most ubiquitous skew distrib-
utions in evolving systems. Beginning with the master
equation for the system configuration probability, we have
derived the time evolution equation for the system size
distribution. Obtained are the stationary distribution,
characterized by power law behavior, and the evolving
distribution of the log-normal or Weibull type, depending
on the parameters such as the production rate, growth
rate, and growth factor. In particular, the exponent of
the power law distribution can take values less than two.
This master equation approach gives a general descrip-
tion of the characteristic skew distributions observed in
evolving systems, revealing the connections between them
and clarifying relevant distributions. For example, one
may consider the evolving distribution of pancreatic islet
sizes [15], where comparison of the fitted data with eq. (14)
and with eqs. (20) and (21) excludes the log-normal distri-
bution, thus confirming the Weibull distribution.
Finally, we also point out that in this approach r

and b are not necessarily greater than zero. Negative
values of r and b, which should describe destruction
(rather than production) and degeneration (rather than
growth), respectively, of existing elements, are not a priori
excluded. Therefore results of this work are not limited
to growing systems in the narrow sense but applicable
to general evolving systems. It is of interest to consider
real systems exhibiting skew distributions and examine
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explicitly the relations between them, which are left for
further study.
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