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PACS 03.65.Ud – Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.)

PACS 03.67.Mn – Entanglement measures, witnesses, and other characterizations
PACS 14.60.Pq – Neutrino mass and mixing

Abstract – Flavor oscillations in elementary particle physics are related to multimode entan-
glement of single-particle states. We show that mode entanglement can be expressed in terms of
flavor transition probabilities, and therefore that single-particle entangled states acquire a precise
operational characterization in the context of particle mixing. We treat in detail the physically
relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP
violation. We discuss experimental schemes for the transfer of the quantum information encoded
in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at
least in principle, that single-particle entangled states of neutrino mixing are legitimate physical
resources for quantum information tasks.

Copyright c© EPLA, 2009

Various branches of condensed matter, atomic physics,
and quantum optics have evolved in recent years towards
the investigation and development of schemes for quan-
tum information and computation science [1]. To this
aim, entanglement is a key ingredient and a crucial
physical resource. Different forms of entanglement have
been proven to be equivalent to observable quantifiers of
performance success in quantum information protocols
either with discrete [2] or continuous variables [3]. In
the present work, we investigate the operational meaning
of entanglement in the context of elementary-particles
physics. We will show that single-particle (mode) entan-
glement associated to particle mixing can be expressed in
terms of transition probabilities in flavor oscillations, and
can be exploited for quantum informational tasks.
The concept of single-particle entanglement has been

introduced and elucidated in a recent series of important
theoretical papers [4–6]. Its use has been discussed in
various contexts of quantum information, including tele-
portation, quantum cryptography, and violation of Bell
inequalities [7,8], and later experimentally demonstrated
with single-photon systems [9–11]. Existing schemes to

(a)E-mail: blasone@sa.infn.it

probe non-locality in single-photon states have been
subsequently generalized to include massive particles [12].
In the present work we extend the discussion to the
arena of elementary particles and provide a general
operational characterization of single-particle entangle-
ment in this context by showing its connection with the
transition probabilities in any quantum system oscillating
between different modes. We then show how this form
of entanglement is in principle a real physical resource
for the realization of quantum information protocols by
discussing explicit experimental schemes for transfer-
ring it to spatially separated modes of stable leptonic
particles. These results allow to place mode entangle-
ment in neutrino oscillations on equal footing with
mode entanglement in single-particle atomic and optical
systems. Furthermore, we show how the single-particle
entanglement quantifies CP violation in neutrino mixing.
Flavor mixing of neutrinos for three generations is

described by the 3× 3 Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary mixing matrix U(θ̃, δ) [13],

see eq. (1) on top of the next page

where (θ̃, δ)≡ (θ12, θ13, θ23; δ) and cij ≡ cos θij , sij ≡
sin θij . The parameters θij are the mixing angles, and δ
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U(θ̃, δ) =


 c12c13 s12c13 s13e

−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13
s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13


 , (1)

is the phase responsible for CP violation. Here, without
loss of generality we consider only Dirac neutrinos. In
the instance of Majorana neutrinos, two additional CP -
violating phases are present, which, however, as is well
known, do not affect the physics of neutrino oscillations.
The three-flavor neutrino states are defined as

|ν(f)〉=U(θ̃, δ) |ν(m)〉 (2)

where |ν(f)〉= (|νe〉, |νµ〉, |ντ 〉)T are the states with

definite flavor and |ν(m)〉= (|ν1〉, |ν2〉, |ν3〉)T those with
definite mass. Let us recall that both |να〉 (α= e, µ, τ)
and |νj〉 (j = 1, 2, 3) are orthonormal, i.e. 〈να|νβ〉= δα,β
and 〈νj |νk〉= δj,k.
Neutrino oscillations are due to neutrino mixing and

neutrino mass differences. The neutrino states |νj〉 have
definite masses mj and definite energies Ej . Their prop-
agation can be described by plane-wave solutions of the
form |νj(t)〉= e−iEjt|νj〉. The time evolution of the flavor
neutrino states is given by

|ν(f)(t)〉= Ũ(t)|ν(f)〉,
Ũ(t)≡U(θ̃, δ)U0(t)U(θ̃, δ)−1, (3)

where |ν(f)〉 are the flavor states at t= 0, U0(t) =

diag(e−iE1t, e−iE2t, e−iE3t), and Ũ(t= 0) = 1. At time t
the transition probability for να→ νβ is

Pνα→νβ (t) = |〈νβ |να(t)〉|2 = |Ũαβ(t)|2, (4)

where α, β = e, µ, τ. The transition probability Pνα→νβ (t)
is a function of the energy differences ∆Ejk =Ej −Ek
(j, k= 1, 2, 3) and of the mixing angles. Since the
current neutrino experiments deal with ultra-relativistic
neutrinos, the standard adopted approximation is

∆Ejk � ∆m
2
jk

2E , where ∆m
2
jk =m

2
j −m2k and E = |−→p | is

the energy of a massless neutrino (all massive neutrinos
are assumed to have the same momentum −→p ).
Flavor neutrinos are identified via charged-current

weak-interaction processes, together with their associated
charged leptons. In the Standard Model (SM), where
neutrinos are taken to be massless, flavor is strictly
conserved in such processes. On the other hand, neutrino
mixing, consisting in a mismatch between flavor and mass,
is at the basis of neutrino oscillations and CP violation.
The introduction of neutrino masses as a correction to
the SM is a necessary condition to explain such effects.
When neutrino mixing is considered, loop corrections

produce violations of lepton flavor in the charged-current
vertices: however, these effects are extremely small
and essentially vanish in the relativistic limit [14].

Consequently, neutrino states entering weak-interaction
processes, like the ones where flavor neutrinos are created
or detected, must be eigenstates of flavor neutrino
charges. The corresponding operators can be rigorously
defined together with their eigenstates in the context of
Quantum Field Theory (QFT) [15]. In the relativistic
limit, the exact QFT flavor states reduce to the usual
Pontecorvo flavor states, which define the flavor modes as
legitimate and physically well-defined individual entities.
Mode entanglement can thus be defined and studied in
analogy with the static case [16].
Equipped with the above setting, one can estab-

lish the following correspondence with three-qubit
states: |νe〉 ≡ |1〉νe |0〉νµ |0〉ντ , |νµ〉 ≡ |0〉νe |1〉νµ |0〉ντ , |ντ 〉 ≡
|0〉νe |0〉νµ |1〉ντ . States |0〉να and |1〉να correspond, respec-
tively, to the absence and the presence of a neutrino in
mode α. Entanglement is thus established among flavor
modes, in a single-particle setting. Equation (3) can then
be recast as

|να(t)〉= Ũαe(t)|1〉νe |0〉νµ |0〉ντ + Ũαµ(t)|0〉νe |1〉νµ |0〉ντ
+ Ũατ (t)|0〉νe |0〉νµ |1〉ντ , (5)

with the normalization condition
∑
β |Ũαβ(t)|2 = 1 (α, β =

e, µ, τ). The time-evolved states |ν(f)(t)〉 are entangled
superpositions of the three-flavor eigenstates with time-
dependent coefficients. It is important to remark that,
although dealing with similar physical systems, both
the framework and the aim of the present paper differ
substantially from those of ref. [16]. In the latter, by
exploiting the wave packet approach, the multipartite
entanglement, associated with the multiqubit space of
mass modes, has been analyzed in connection with the
“decoherence” effects induced by free evolution. In the
present work, by exploiting the plane-wave approxi-
mation, the entanglement is quantified with respect to
the multiqubit space associated with flavor modes, and
is related to the quantum information encoded in the
neutrino flavor states, which is in principle experimentally
accessible, as we will show by devising an explicit scheme
for the information transfer.
States of the form in eq. (5) belong to the class of W

states. These, together with the GHZ states, define the
two possible sets of states with tripartite entanglement
that are inequivalent under local operations and classical
communication [17]. In some instances, only two neutrinos
are significantly involved in the mixing. For example,
only the transition νµ↔ ντ is relevant for atmospheric
neutrinos, while only the transitions of the type νe↔ να
are relevant for solar neutrinos. For two-flavor mixing
the mixing matrix U(θ̃, δ) reduces to the 2× 2 rotation
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matrix U(θ),

U(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (6)

the evolution operator reads U0(t) = diag(e
−iE1t, e−iE2t),

and the time-evolved flavor states yield the Bell-like
superposition (α= e, µ):

|να(t)〉= Ũαe(t)|1〉νe |0〉νµ + Ũαµ(t)|0〉νe |1〉νµ . (7)

Bipartite entanglement of pure states is unambiguously
quantified by the von Neumann entropy or by any other
monotonic function of the former [18]. Among entangle-
ment monotones, the linear entropy has a special physical
significance because it is directly linked to the purity of the
reduced states, and enters in the fundamental monogamy
inequalities for distributed entanglement in the multi-
partite setting [18]. As one moves from the two- to the
three-flavor scenario, multipartite entanglement measures
are readily available in terms of functions of bipartite
measures [19–21]. Representative of this type of measures
is the global entanglement. It is defined as the sum of all
the two-qubit entanglements between a single subsystem
and each of the remaining ones [19], and can be expressed
as the average subsystem linear entropy [20]. Global entan-
glement can then be generalized by constructing the set
of mean linear entropies associated to all possible biparti-
tions of the entire system [21]. An alternative characteriza-
tion of multipartite entanglement is given in refs. [22,23].
Let ρ= |ψ〉〈ψ| be the density operator corresponding

to a pure state |ψ〉, describing the system S parti-
tioned into N parties. Consider the bipartition of the
N -partite system S = {S1, S2, . . . , SN} in two subsystems
SAn = {Si1 , Si2 , . . . , Sin}, with 1� i1 < i2 < . . . < in �N
(1� n<N), and SBN−n = {Sj1 , Sj2 , . . . , SjN−n}, with
1� j1 < j2 < . . . < jN−n �N , and iq �= jp. Let

ρAn ≡ ρi1,i2,...,in =TrBN−n [ρ] = Trj1,j2,...,jN−n [ρ] (8)

denote the reduced density matrix of subsystem SAn
after tracing over subsystem SBN−n . The linear entropy
associated to such a bipartition is defined as

S
(An;BN−n)
L (ρ) =

d

d− 1(1−TrAn [ρ
2
An
]), (9)

where the d is the Hilbert-space dimension given by
d=min{dimSAn ,dimSBN−n}=min{2n, 2N−n}. Finally,
we introduce the average linear entropy

〈S(n:N−n)L (ρ)〉=
(
N
n

)−1∑
An

S
(An;BN−n)
L (ρ), (10)

where the sum is intended over all the possible biparti-
tions of the system in two subsystems, respectively with
n and N −n elements (1� n<N) [21].
We can now compute the linear entropies (9) and (10)

for the two-qubit Bell state |να(t)〉, i.e. eq. (7), with
density matrix ρ(α) = |να(t)〉〈να(t)|. The linear entropy

Fig. 1: (Color online) Linear entropy S
(e;µ)
Le (full line) as a

function of the scaled time T = 2Et
∆m212

. The mixing angle θ is

fixed at the experimental value sin2θ= 0.314. The transition
probabilities Pνe→νe (dashed line) and Pνe→νµ (dot-dashed
line) are reported as well for comparison.

associated to the reduced state after tracing over one mode
(flavor) can be computed straightforwardly:

S
(µ;e)
Lα = S

(e;µ)
Lα = 4|Ũαe(t)|2 |Ũαµ(t)|2
= 4|Ũαe(t)|2 (1− |Ũαe(t)|2)
= 4|Ũαµ(t)|2 (1− |Ũαµ(t)|2). (11)

In eq. (11) and in the following, we use the notation

S
(e;µ)
Lα ≡ S(e;µ)L (ρ(α)), where the subscript α refers to the
time-evolved state (channel), and the superscripts (e;µ)
refer to the considered modes (flavors). Clearly, for the
two-flavor state (7), and in general for any two-qubit

system, symmetry imposes S
(e;µ)
Lα = S

(µ;e)
Lα = 〈S(1:1)Lα 〉.

Expression (11) establishes that the linear entropy
of the reduced state is equal to the product of the
two-flavor transition probabilities. Moreover, for any
reduced state ρ of a two-level system one has that
SL = 2[1−Tr(ρ2)] = 4Det ρ= 4λ1(1−λ1), where λ1 is
one of the two non-negative eigenvalues of ρ, and the
relation λ1+λ2 = 1 has been exploited. Comparing with
eq. (11), one sees that the transition probabilities coincide
with the eigenvalues of the reduced-state density matrix.

In fig. 1 we show the behavior of S
(e;µ)
Le as a function

of the scaled, dimensionless time T = 2Et
∆m212

. In the same

figure, we also report the behavior of the transition
probabilities Pνe→νe and Pνe→νµ . The plots have a clear
physical interpretation. At time T = 0, the entanglement
is zero, the global state of the system is factorized, and
the two flavors are not mixed. For T > 0, flavors start
to oscillate and the entanglement is maximal at largest
mixing, Pνe→νe = Pνe→νµ = 0.5, and minimum at T = π.
We can now investigate three-flavor oscillations, and

the associated three-qubit W -like states (5). Similarly to
eq. (11), tracing, e.g., over mode τ , one has

S
(e,µ;τ)
Lα = 4|Ũατ (t)|2 (|Ũαe(t)|2+ |Ũαµ(t)|2)

= 4|Ũατ (t)|2 (1− |Ũατ (t)|2). (12)
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Fig. 2: (Color online) Linear entropies S
(α,β;γ)
Le and 〈S(2;1)Le 〉 as

functions of the scaled time T . Curves correspond to the partial
linear entropies S

(e,µ;τ)
Le (long-dashed line), S

(e,τ ;µ)
Le (dashed

line), S
(µ,τ ;e)
Le (dot-dashed line), and to the average linear

entropy 〈S(2;1)Le 〉 (full line). Parameters θij and ∆m2ij are fixed
at the central experimental values [24].

Fig. 3: (Color online) Transition probabilities Pνe→να as
functions of the scaled time T . Parameters θij and ∆m

2
ij are

fixed at the central experimental values as in fig. 2. Curves
correspond to Pνe→νe (long-dashed line), Pνe→νµ (dashed line),
and Pνe→ντ (dot-dashed line).

The linear entropies for the two remaining bipartitions
are easily obtained by permuting the indexes e, µ, τ . The
average linear entropy for the state (5) is then

〈S(2:1)Lα 〉=
8

3
(|Ũαe(t)|2|Ũαµ(t)|2+ |Ũαe(t)|2|Ũατ (t)|2

+ |Ũαµ(t)|2|Ũατ (t)|2). (13)

In fig. 2, we show S
(α,β;γ)
Le and 〈S(2;1)Le 〉 as functions

of the scaled time T = 2Et
∆m212

. The mixing angles θij
and the squared mass differences are fixed at the most
recent experimental values reported in ref. [24]. In order
to track the behavior of the entanglement, we plot in
fig. 3 the transition probabilities Pνe→να (α= e, µ, τ).
Comparing fig. 2 and fig. 3, we observe that, as one
may expect, the more mixed are the flavors, the higher
is the global multipartite entanglement of the system.

Moreover, the partial linear entropies S
(e,µ;τ)
Le and S

(e,τ ;µ)
Le

measuring the reduced bipartite entanglement, exhibit a

Fig. 4: (Color online) The imbalances ∆S
(α,β;γ)
Le as functions of

the scaled time T . Curves correspond to ∆S
(e,µ;τ)
Le (long-dashed

line) and ∆S
(e,τ ;µ)
Le (dot-dashed line). The quantity ∆S

(µ,τ ;e)
Le

is vanishing. Parameters θij and ∆m
2
ij are fixed at the central

experimental values as in fig. 2. The CP -violating phase is set
at the value δ= π/2.

similar behavior due to the strong correlation between the
components νµ and ντ . As T > 0 the probabilities Pνe→νµ
and Pνe→ντ increase and oscillate while remaining close.
Similar considerations hold for states |νµ(t)〉 and |ντ (t)〉.
Entanglement and flavor transition probabilities for these
states exhibit very fast oscillating behaviors, related to the
experimentally measured values of the mixing parameters.
Because of CPT invariance, the CP asymmetry ∆α,βCP is

equal to the asymmetry under time reversal, defined as

∆α,βT = Pνα→νβ (t)−Pνβ→να(t)
= Pνα→νβ (t)−Pνα→νβ (−t). (14)

In the three-flavor instance, such a quantity is differ-
ent from zero for a non-vanishing phase δ. It is worth
noticing that

∑
β ∆

αβ
CP = 0 with α, β = e, µ, τ . Introducing

the “imbalances”, i.e. the difference between the linear
entropies and their time-reversed expressions,

∆S
(α,β;γ)
Lλ = S

(α,β;γ)
Lλ (t)−S(α,β;γ)Lλ (−t), (15)

we can compute, e.g., ∆S
(e,µ;τ)
Le , and obtain

∆S
(e,µ;τ)
Le = 4∆e,µCP (|Ũeτ (t)|2+ |Ũτe(t)|2− 1), (16)

where the last factor is CP -even. In fig. 4 we show the

behavior of the imbalances ∆S
(α,β;γ)
Le as functions of time,

and see how they effectively measure CP violation.
In order to demonstrate that the form of single-particle

entanglement encoded in the time-evolved flavor states
|ν(f)(t)〉 is a real physical resource that can be legitimately
used, at least in principle, for protocols of quantum
information, we discuss an experimental scheme for the
transfer of the flavor entanglement of a neutrino beam into
that of a single-particle system with spatially separated
modes. For simplicity, we will restrict the analysis to two
flavors α= e, µ. Consider the elementary charged-current
interaction between a neutrino να with flavor α and a
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n
p

Ω1

Ω2

e-

µµµµ−−−−B(r)

Fig. 5: (Color online) Scheme for the generation of single-
particle entangled lepton states. A neutrino beam is focused
on a target where events of the following charged-current
interaction may occur: να+n−→ α−+ p with α= e, µ. The
beam is assumed to have energy higher than the threshold value
necessary for the creation of a muon. A spatially non-uniform
magnetic field B(r) is then applied to limit the momentum
of the outgoing lepton within a certain solid angle Ωi, and
to ensure the spatial separation between the electron and
muon spatial paths. The reaction produces a superposition of
electronic and muonic spatially separated states.

nucleon N [13]. The quasi-elastic scattering interaction
yields the production of a lepton α− and of an outgoing
baryon X, according to the reaction

να+N −→ α−+X. (17)

In the simplest instance, the nucleon N is a neutron
and the baryon X is a proton p; the corresponding
scheme is illustrated in fig. 5. Given the initial Bell-like
superposition (7), the unitary process associated with the
weak interaction (17) produces the superposition

|α(t)〉=Λe|1〉e|0〉µ+Λµ|0〉e|1〉µ, (18)

where |Λe|2+ |Λµ|2 = 1, and |k〉α, with k= 0, 1, represents
the lepton qubit. The coefficients Λα are proportional
to Ũαβ(t) and to the cross-sections associated with
the creation of an electron or a muon. Comparing our
single-lepton system with the single-photon system, the
quantum uncertainty on “which path” of the photon at
the output of an unbalanced beam splitter is replaced by
the uncertainty on “which flavor” of the produced lepton.
The coefficients Λα play the role of the transmissivity
and of the reflectivity of the beam splitter. Moreover, by
exploiting the mass difference between the two leptons,
the desired spatial separation between the flavors can
be achieved by applying a non-uniform magnetic field. It
is also important to remark that the approach proposed
in the present work can be applied even in extended
neutrino models including one or more sterile neutrinos.
In such cases, from a mathematical point of view the main
difference is that one deals with more than three modes

(flavors), while, from an operational point of view, the
presence of sterile neutrinos (undetectable to date) would
introduce a mechanism of loss of quantum information
by making the (observed) mixing matrix non-unitary.
Therefore we can conclude that, at least in principle,
the quantum information encoded in the neutrino flavor
states can be transferred to a delocalized two-flavor lepton
state, and the single-particle mode entanglement acquires
an operational characterization that can be exploited for
quantum information tasks using systems of elementary
particle physics.
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