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Abstract – We perform a statistical analysis with the prospective results of future experiments
on neutrino-less double beta decay, direct searches for neutrino mass (KATRIN) and cosmological
observations. Realistic errors are used and the nuclear matrix element uncertainty for neutrino-
less double beta decay is also taken into account. Three benchmark scenarios are introduced,
corresponding to quasi-degenerate, inverse hierarchical neutrinos, and an intermediate case. We
investigate to what extent these scenarios can be reconstructed. Furthermore, we check the
compatibility of the scenarios with the claimed evidence of neutrino-less double beta decay.
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Introduction. – Neutrino mass and lepton mixing
represent an unambiguous proof that the Standard Model
(SM) of elementary particles is incomplete. Various exper-
iments with solar, atmospheric and man-made neutrino
sources imply non-trivial lepton mixing angles, as well
as non-zero and non-degenerate neutrino masses. Their
values are extremely suppressed with respect to the masses
of the other (electrically charged) fermions of the SM. The
most prominent and often studied mechanism to explain
the smallness of neutrino masses is the see-saw mecha-
nism [1]. The neutrino mass scale is here inversely propor-
tional to the scale of its origin. In addition, lepton number
violation is predicted: neutrinos are Majorana particles.
Searching for this property will be a crucial test of the see-
saw mechanism, but also of other mechanisms leading to
small Majorana neutrino masses. Possible phenomenologi-
cal consequences of lepton number violation are the gener-
ation of the baryon asymmetry of the Universe [2] or, at
low energies, neutrino-less double beta decay (0νββ) [3].
This decay of certain nuclei, (A,Z)→ (A,Z +2)+2 e−,
which has not yet been observed, clearly violates lepton
number by two units, and is intensively searched for [3].
We will assume here that light Majorana neutrinos are
exchanged in the diagram responsible for 0νββ. In this
case, the amplitude for this process is proportional to the
coherent sum

mee ≡
3∑
i=1

U2eimi, (1)

(a)E-mail: werner.rodejohann@mpi-hd.mpg.de

where mi are the individual neutrino masses and U
is the leptonic mixing, or Pontecorvo-Maki-Nakagawa-
Sakata (PMNS), matrix. The absolute value of mee is
called the effective mass. The entries Uei can be written
as Ue1 = cosθ12 cosθ13, Ue2 = sinθ12 cosθ13 e

iα and Ue3 =
sinθ13 e

iβ , where α and β are two currently unknown
“Majorana phases” and θ12,13 are mixing angles. While
θ13 is constrained mainly by short-baseline reactor exper-
iments, θ12 is probed by solar and long-baseline reactor
neutrino experiments. Their current best-fit values as well
as 1σ and 3σ ranges can be obtained from three-flavor fits,
the result being [4]

sin2 θ12 = 0.32 (±0.02)+0.08−0.06, sin
2 θ13 = 0

+0.019, 0.050. (2)

In what regards the neutrino masses, for a normal
ordering one has m3 >m2 >m1 with m

2
2 =m

2
1+∆m

2�
and m23 =m

2
1+∆m

2
A. In case of an inverted ordering

we have m2 >m1 >m3 with m
2
2 =m

2
3+∆m

2�+∆m2A
and m21 =m

2
3+∆m

2
A. Here ∆m

2� and ∆m2A are mass-
squared differences with best-fit values and 3σ ranges
(7.9+1.1−0.9) · 10−5 eV2 and (2.6+0.6−0.6) · 10−3 eV2, respec-
tively [4]. Quasi-degenerate neutrino masses occur when
m21,2,3�∆m2A,∆m2�. If neutrinos are Majorana particles,
all low-energy neutrino phenomenology can be described
by the neutrino mass matrix mν =U

∗mdiagν U†. It
contains nine physical parameters. Seven out of the nine
parameters of the neutrino mass matrix appear in |mee|.
Therefore, it contains a large amount of information, in
particular if complementary measurements of some of the
other parameters exist. We also note that all parameters
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of mν which do not influence neutrino oscillations show
up in the effective mass. Those are the the Majorana
phases and, in particular, the individual neutrino masses
(neutrino oscillations are only sensitive to mass-squared
differences). For a review on the dependence of |mee|
on the various neutrino parameters see refs. [3,5,6] and
references therein. In the present letter, in contrast to
other works statistically analyzing future neutrino mass
measurements including 0νββ [7–13], we focus on the
neutrino mass scale, i.e. the value of the smallest neutrino
mass. To this end we define three natural benchmark
scenarios and investigate how future experiments may be
able to constrain them. Our goal here is to combine as
much mass-related information as possible.

Observables related to neutrino mass. – Currently
the strongest experimental limits1 on the half-life of
neutrino-less double beta decay are (all at 90% C.L.)
1.9 · 1025 y for 76Ge [15] (see also [16]), T1/2 � 3.0 · 1024 y
for 130Te [17], T1/2 � 5.8 · 1023 y for 100Mo and T1/2 �
2.1 · 1023 y for 82Se [18]. The existing limits on T1/2 will
be improved considerably (by two orders of magnitude or
more) in the near future by various experiments [3]. The
uncertainty in nuclear matrix element (NME) calculations
is a serious problem to translate these bounds into upper
limits on the effective mass [13,19]. We will take into
account in particular this uncertainty in our analysis.
Depending on the nuclei and NME, the current limit on
the effective mass as extracted from the half-lives given
above lies between several tenths of and a few eV. This
has to be compared with the predictions which can be
made for the effective mass. Inserting the known ranges
of the oscillation parameters, and varying the unknown
parameters within their allowed ranges, one can generate
plots as the ones in fig. 1. They display (for Ue3 = 0) the
effective mass as a function of the smallest neutrino mass,
the sum of neutrino masses

Σ≡
3∑
i=1

mi (3)

and the kinematic neutrino mass

mβ ≡

√√√√ 3∑
i=1

|Uei|2m2i . (4)

The latter two quantities can be measured through
cosmological observations [20] and experiments like
KATRIN [21], respectively. The latter experiment has a
5σ discovery potential of 0.35 eV for mβ , and a null result
will lead to a 90% C.L. limit of 0.2 or 0.17 eV [22]. In
the sensitivity range of KATRIN, the relation 3mβ =Σ
holds to a very good precision. Cosmology is expected to
probe values of Σ down to the 0.1 eV range [20] (to be
specific, we take a value of 0.15 eV in fig. 1). To achieve

1We note that there is a claimed positive signal for 0νββ from
ref. [14]. We will turn to this issue later on.

Fig. 1: (Colour on-line) The effective mass as a function of the
smallest neutrino mass (top), the sum of neutrino masses Σ
(middle) and the kinematic neutrino mass mβ (bottom). The
value Ue3 = 0 and the current 3σ ranges of the other oscillation
parameters have been used.

such impressive results, one takes advantage of future
observations of weak gravitational lensing of galaxies, and
of the cosmic microwave background or detailed analyses
of the 21 cm hydrogen emission lines at high redshift. It
is fair to say that a conservative limit on Σ is 1 eV. This
value corresponds roughly to the bound obtained from
WMAP 5-year data alone [23]. Recall that neutrino mass
bounds from cosmology depend strongly on the data
sets, the priors and the model, i.e., adding parameters
which are degenerate with neutrino masses will relax the
bounds, see, e.g., [24]. Finally, current limits for mβ are
2.3 eV [25].
The blue and yellow bands in fig. 1 correspond to

the normal and inverted mass ordering of the neutrinos,
respectively. The darker areas in the blue and yellow bands
are obtained when the oscillation parameters are fixed to
their best-fit values and only the Majorana phases are
varied. The lighter areas correspond to the 3σ ranges of
the oscillation parameters. Note that this broadening is
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very weak for the maximum value of |mee| in the case of
inverted mass ordering and for quasi-degenerate neutrinos.
This is because the upper limits on |mee| are roughly√
∆m2A and m3, respectively, and varying the oscillation

parameters has very little impact. In the top panel of
fig. 1, we have indicated three special values of |mee| which
correspond to the goals of the three phases of the GERDA
experiment (where a certain NME has been assumed,
see [26] for details).

Statistical analysis. – Now we will perform a statis-
tical analysis to investigate how well it will be possible
to reconstruct different realistic physical scenarios with
upcoming neutrino mass experiments. Note that, since
we want to investigate realistic situations, we concentrate
only on cases that can be probed in the near future. For
definiteness, we consider the inverted mass ordering and
three different scenarios called QD (quasi-degenerate),
INT (intermediate) and IH (inverted hierarchy) that are
defined by different values of the smallest neutrino mass
m3. Note that the QD scenario would, to a very large
extent, also apply to a normal mass ordering. The hypo-
thetical “true values” for the different observables in these
scenarios are:

Scenario m3 [eV] |mee| [eV] mβ [eV] Σ [eV]
QD 0.3 0.11–0.30 0.30 0.91
INT 0.1 0.04–0.11 (0.11) 0.32
IH 0.003 0.02–0.05 (0.05) (0.10)

We have used here the best-fit values for the oscillation
parameters. The range for |mee| originates from the
variation of the Majorana phases α and β. Note that the
KATRIN experiment will only be able to measure mβ in
the case of the QD scenario, while for the INT and IH
ones it will only provide an upper limit. The same is true
for the measurement of Σ in the IH scenario. These cases
are indicated in the table by writing the respective values
in brackets.
Let us now give a summary of the different experi-

mental errors and theoretical uncertainties. Regarding the
error on the effective mass in 0νββ, we have to distin-
guish between experimental and “theoretical uncertain-
ties”, where the latter result from the NME uncertainty.
The experimental error can be included by noting that the
decay width depends quadratically on the effective mass.
Thus,

σ(|mee|exp) =
|mee|exp
2

σ(Γobs)

Γobs
, (5)

where |mee|exp is the measured value of the effective
neutrino mass and σ(Γobs) is the experimental error on
the measured decay width Γobs for neutrino-less double
beta decay. For definiteness, we choose the ratio of the
latter two as

σ(Γobs)

Γobs
� 23.3%, (6)

which is the value obtainable in the GERDA experiment
[26]. We combine, similarly to the procedure developed in

ref. [7], the experimental error with the theoretical NME
error via

σ(|mee|) = (1+ ζ) (|mee|+σ(|mee|exp))− |mee|, (7)

where ζ � 0 parameterizes the NME uncertainty and
σ(|mee|exp) is given in eq. (5). Following ref. [10], we define
a covariance matrix

Sab ≡ δab σ2(a)+
∑
i

∂Ta

∂xi

∂Tb

∂xi
σ2i , (8)

where T1 = |mee|, T2 =Σ and T3 =m2β . Furthermore,
σ2(a) is the error on Ta, and a, b label the entries in the
covariance matrix. The xi are the oscillation parameters
that enter |mee| (and mβ , though in the observable
range of mβ they have basically no influence). The errors
on the Ta are given by eq. (7) as well as by σ(m

2
β) =

0.025 eV2 [21,22] and σ(Σ) = 0.05 eV [20].
Defining va = Ta− (Ta)exp, where (Ta)exp denotes the

experimental value of Ta, our χ
2-function to be minimized

is
χ2 = vT S−1 v. (9)

All oscillation parameters are set to their current best-fit
values and their (symmetrized) standard deviations
are determined from their 1σ-ranges, which is a good
approximation for future 3σ-ranges. Anyway, the impact
of different numerical values here would not lead to qual-
itatively different results. We first minimize the χ2 from
eq. (9) with respect to the Majorana phases α and β. The
resulting function is χ2res =minα,βχ

2. We then continue
by plotting the resulting 1σ, 2σ and 3σ ranges for the
smallest neutrino mass m3 determined by setting ∆χ

2 =
χ2res−χ2res,min equal to 1, 4 and 9. This corresponds to a
χ2-function with one free parameter (namelym3). |mee|exp
is the assumed measured value of |mee|, on which the
reconstructed range of m3 depends. The minimum in the
|mee|exp-m3 plane is determined such that ∆χ2 is zero in
the true region of the corresponding scenario (e.g., QD).
The results of our analysis are shown as solid lines

in the left column of figs. 2, 3 and 4. In all cases, we
have calculated the result for a consistent measurement
(i.e., mβ and Σ are measured at their true values in
the corresponding scenarios). The NME uncertainties we
have chosen are ζ = 0 (no uncertainty), 0.25 and 0.5. We
have checked that values of ζ > 0.5 will lead to results
not too much different from the ones for ζ = 0.5. The
value ζ = 0.25 is a quite typical one, cf. refs. [13,19]. This
uncertainty arises from the highly non-trivial calculations
of the nuclear part of the neutrino-less double beta decay
process. Different methods, and even different Ansätze
within the same framework, differ in their result, and their
spread is commonly taken into account as “theoretical
uncertainty”. Glancing at fig. 5 in ref. [27], where the
results of different methods of the NME calculation are
compared for different nuclei including 76Ge, one can
indeed see that the spread of the respective values around
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Fig. 2: (Colour on-line) 1σ, 2σ and 3σ regions in the
m3-|mee|exp plane for the QD scenario. The left column shows
the correct (solid line) as well as two possible incorrect cosmo-
logical measurements (dashed lines). The less desirable case,
namely only taking into account a KATRIN measurement, is
shown in the plots on the right. The area denoted HDM is the
range of |mee| from the claim of part of the Heidelberg-Moscow
Collaboration.

their mean value is about 0.2. We conclude that the values
we use are realistic and typical.
The true values of |mee| and m3 are marked by the

vertical black lines. The plots illustrate how well we can
reconstruct the different scenarios for the various values of
the NME uncertainty. Having a look at fig. 2, we see that
the QD scenario can be reconstructed quite well, which is
not surprising since in that case the KATRIN experiment
as well as the cosmological measurement will provide a
non-trivial signal. E.g., for |mee|exp = 0.20 eV, the 1, 2
and 3σ ranges for m3 are 0.28–0.32 eV, 0.27–0.33 eV and
0.25–0.35 eV, while the true value is 0.30 eV. Therefore,
the reconstruction is quite accurate. This remains true
also if the uncertainty in the NME is non-zero because
the plots are still narrow around the true value of m3 (the
numerical values suffer nearly no change) even though,

Fig. 3: (Colour on-line) Same as fig. 2 for the INT scenario.

with a larger NME uncertainty, also higher values of
|mee|exp are plausible. This is true for all three scenarios
under consideration.
Similar statements hold for the INT scenario shown in

fig. 3, even though mβ cannot be measured now. However,
because there will still be a measurement of Σ, we have
sufficient information on the neutrino mass. In case the
central measured value is |mee|exp = 0.08 eV and ζ = 0 the
ranges are 0.08–0.12 eV at 1σ and 0.05–0.15 eV at 3σ. In
case of ζ = 0.5 we find 0.08–0.12 eV at 1σ and 0.04–0.15 eV
at 3σ. The mass scale has now a 3σ uncertainty of 50%,
to be compared with roughly 15% in the QD scenario.
For IH, in turn, there is no measurement that gives

information on m3. Hence, it is only possible to give an
upper limit on the smallest neutrino mass, as illustrated by
the long horizontal band in the left column of fig. 4. Note
that this band corresponds to the yellow band marking
the inverted mass ordering in the upper plot of fig. 1. This
upper limit is almost trivial, i.e., it corresponds to the
neutrino mass limit obtainable from 0νββ alone. To give
some numerical values, for |mee|exp = 0.04 eV one would
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Fig. 4: (Colour on-line) Same as fig. 2 for the IH scenario.

have the 1(3)σ ranges m3 < 0.03(0.07) eV for ζ = 0 and
for ζ = 0.5. Due to the bound on Σ, there is very little
dependence on ζ.
Up to now, the discussion has focused on the case in

which all measurements are compatible. As an example
for inconsistency we discuss here a possible clash between
results from KATRIN and from cosmology. To this end we
leave (mβ)exp equal to the true value of the corresponding
scenario (new physics is not expected to influencemβ [28])
and take values of Σexp which are smaller or larger than
the true value. There are many scenarios or models in
the literature which can lead to wrong values of Σ, see,
e.g., refs. [29]. The result is shown by the areas within
the dashed lines in the left columns of figs. 2–4. Having a
look at QD first, we realize immediately that the physical
range is reconstructed incorrectly. Hence, if there are
systematic errors in the cosmological measurement, or
unknown features in cosmology which we are not aware
of, a wrong neutrino mass is reconstructed. In the QD
case there is still information from KATRIN, which leads
to a reconstructed neutrino mass at most one order away

from the true value, even if the wrong Σ is taken into
account. For the INT scenario, however, there is no
information from KATRIN. Consequently, it might be that
a wrong upper limit on m3 is concluded, as illustrated by
the long band for Σexp = 0.05 eV in the upper left plot
of fig. 3. This is an example wherein one could draw a
wrong conclusion by taking the cosmological measurement
at face value. As expected, even worse cases may exist for
the IH scenario. E.g., in the upper left plot of fig. 4 one
would, for Σexp = 0.3 eV, reconstruct a smallest neutrino
mass of roughly 0.1 eV, to be compared with the true value
m3 = 0.003 eV. For the IH scenario, one might not even
realize that there is an inconsistency, since in that case,
the KATRIN experiment can only provide an upper limit
which is too far away from the true value of m3.
One possible cross-check (or the possible consequence

if one indeed finds that the results from KATRIN and
from cosmology do not fit together) would be to dismiss
the cosmological data altogether. We have also analyzed
this case. Here, Sab from eq. (8) as well as va would change
from 3-dimensional to 2-dimensional objects while the rest
of the procedure remains the same. The results for this
analysis are plotted in the right columns of figs. 2–4, again
for different values of the NME uncertainty. For QD, the
most optimal scenario, neglecting cosmology, would simply
increase the errors in the determination of m3: e.g., for
|mee|exp = 0.20 eV and ζ = 0 the ranges are 0.26–0.34 eV
at 1σ and 0.16–0.41 eV at 3σ, while for ζ = 0.5 we find
0.26–0.34 eV at 1σ and 0.13–0.41 eV at 3σ. The NME
uncertainty has now a slightly bigger impact, and the
error on m3 increases by a factor of three, since now it
is about 50% while it was roughly 15% when Σ has been
included in the analysis. For the INT scenario, however,
there is a major difference to the former case: since now
there is no other measurement besides |mee|exp providing
information on m3, we can only derive an upper limit
instead of determining a certain range for m3. This is
indicated by the band in the upper right plot of fig. 3.
Finally, for IH, the limit on m3 gets only slightly worse
compared to the case of a Σ, which is too small to be
measured. In this case there would not even be a real
drawback in taking into account the KATRIN result only.
It remains to be said that in all cases a higher uncertainty
for the NME does not significantly modify the conclusions
in what concerns the value of m3. Finally, it is worth
mentioning that if in QD scenarios the error on Σ is
decreased (increased), the obtained error on the neutrino
mass is decreased (increased) by approximately the same
factor.
With our analysis we can also compare the compatibility

of our three benchmark scenarios with the range for m3
of 0.15–0.46 eV, calculated as the (global fit) 2σ range in
ref. [12] from the claim in ref. [14]. We give the implied
range for m3 as the gray band in figs. 2, 3 and 4. We see
that the QD scenario is consistent with the claim, even
for a measurement of Σ= 0.6 eV, to be compared with the
true value Σ= 0.9 eV. The INT scenario (IH scenario) is
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barely (very) incompatible for measured “true” values, but
a too high value of Σexp can lead again to compatibility.
We see that testing the claim and comparing it with
cosmology is a non-trivial task (see also [13]).

Conclusions. – In this work we have investigated
possible constraints on the neutrino mass in future
experiments. We assumed realistic errors on the observ-
ables, in particular for neutrino-less double beta decay.
Then, we have checked how certain realistic benchmark
scenarios, which correspond to different regimes for
the smallest neutrino mass, can be reconstructed from
future measurements. Furthermore, we have pointed out
how wrong conclusions could be drawn from inconsis-
tent results, i.e., if cosmology provides a wrong value
for the sum of neutrino masses. In case of consistent
measurements we may summarize as follows: typical 3σ
errors for quasi-degenerate neutrino masses range from
roughly 15% (including Σ) to 50% (excluding Σ), where
NME uncertainties play a larger role in the latter case.
Intermediate scale masses can also be determined with
50% uncertainty. In case of an inverted hierarchy, the
effective mass is constant for a large range of the smallest
mass, which allows only to derive upper limits on it.
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by Lévy M., Basdevant J.-L., Speiser D., Weyers J.,
Gastmans R. and Jacob M. (Plenum Press, New York)
1980, p. 687; Gell-Mann M., Ramond P. and Slansky
R., in Supergravity, edited by van Nieuwenhuizen P.
and Freedman D. Z. (North Holland, Amsterdam) 1979,
p. 315; Mohapatra R. N. and Senjanović G., Phys.
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